An ordered algebra is called a sup-algebra if its underlying poset is a complete lattice and its operations are compatible with joins in each variable. In this article we study quotients and subalgebras of sup-algebras. We show that the congruence lattice of a sup-algebra is isomorphic to the lattice of its nuclei and dually isomorphic to the lattice of its meet-closed subalgebras. We also prove that the lattice of subalgebras of a sup-algebra is isomorphic to the lattice of its conuclei.
1. Bloom, S. L. Varieties of ordered algebras. J. Comput. Syst. Sci., 1976, 13, 200–212.
http://dx.doi.org/10.1016/S0022-0000(76)80030-X
2. Czédli, G. and Lenkehegyi, A. On classes of ordered algebras and quasiorder distributivity. Acta Sci. Math., 1983, 46, 41–54.
3. Ésik, Z. and Kuich, W. Inductive *-semirings. Theor. Comput. Sci., 2004, 324, 3–33.
http://dx.doi.org/10.1016/j.tcs.2004.03.050
4. Kruml, D. and Paseka, J. Algebraic and categorical aspects of quantales. In Handbook of Algebra, Vol. 5 (Hazewinkel, M., ed.). Elsevier, 2008, 323–362.
http://dx.doi.org/10.1016/s1570-7954(07)05006-1
5. Paseka, J. Projective sup-algebras: a general view. Topol. Appl., 2008, 155, 308–317.
http://dx.doi.org/10.1016/j.topol.2007.08.016
6. Resende, P. Tropological Systems and Observational Logic in Concurrency and Specification. PhD thesis, IST, Universidade Técnica de Lisboa, 1998.
7. Rosenthal, K. I. Quantales and Their Applications. Pitman Research Notes in Mathematics 234. Harlow, Essex, 1990.
8. Russo, C. Quantale Modules. Lambert Academic Publishing, Saarbrücken, 2009.
9. Solovyov, S. A representation theorem for quantale algebras. Contr. Gen. Alg., 2008, 18, 189–198.
10. Solovyov, S. A note on nuclei of quantale algebras. Bull. Sect. Logic Univ. Lodz, 2011, 40, 91–112.
11. Zhang, X. and Laan, V. On injective hulls of S-posets. Semigroup Forum, 2015, 91, 62–70.http://dx.doi.org/10.1007/s00233-014-9646-4