Aza-amino acid precursors with an aromatic side chain were synthesized using hydrazine alkylation. This synthetic pathway avoided use of hydrogen gas and expensive hydrogenation catalysts. For the optimization of this alkylation reaction various solvents and different reaction conditions were used. Aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors with different N- and side-chain protecting groups were synthesized starting from N-protected hydrazines.
1. Quibell, M., Turnell, W. G., and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans., 1993, 1, 2843–2849.
http://dx.doi.org/10.1039/p19930002843
2. Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A. et al. Solid-phase synthesis of “mixed” peptidomimetics using Fmoc-protected Aza-β3-amino acids and α-amino acids. J. Org. Chem., 2005, 70(26), 10701–10708.
http://dx.doi.org/10.1021/jo051585o
3. Boeglin, D. and Lubell, W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7(6), 864–878.
http://dx.doi.org/10.1021/cc050043h
4. Freeman, N. S., Hurevich, M., and Gilon, C. Synthesis of N¢-substituted Ddz-protected hydrazines and their application in solid phase synthesis of aza-peptides. Tetrahedron, 2009, 65, 1737–1745.
http://dx.doi.org/10.1016/j.tet.2008.11.038
5. Freeman, N. S., Tal-Gan, Y., Klein, S., Levitzki, A., and Gilon, C. Microwave-assisted solid-phase aza-peptide synthesis: aza scan of a PKB/Akt inhibitor using aza-arginine and aza-proline precursors. J. Org. Chem., 2011, 76, 3078–3085.
http://dx.doi.org/10.1021/jo102422x
6. Spiegel, J., Mas-Moruno, C., Kessler, H., and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. J. Org. Chem., 2012, 77, 5271–5278.
http://dx.doi.org/10.1021/jo300311q
7. Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.
http://dx.doi.org/10.1016/j.tetlet.2007.06.082
8. Lee, J. and Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol., 2010, 5, 233–243.
http://dx.doi.org/10.1021/cb900232a
9. Peifer, M., Giacomo, F. D., Schandl, M., and Vasella, A. Oligonucleotide analogues with integrated bases and backbone hydrazide- and amide-linked analogues. 1. Design and synthesis of monomeric building blocks. Helv. Chim. Acta, 2009, 92, 1134–1166.
http://dx.doi.org/10.1002/hlca.200900047
10. Fässler, A., Bold, G., Capraro, H.-G., Cozens, R., Mestan, J., Poncioni, B. et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39, 3203–3216.
http://dx.doi.org/10.1021/jm960022p
11. Mastitski, A., Kisseljova, K., and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proc. Estonian Acad. Sci., 2014, 63, 438–443.
http://dx.doi.org/10.3176/proc.2014.4.09
12. Mastitski, A. and Järv, J. One-pot synthesis of Fmoc- and Boc-protected aza-methionine precursors from 2-methylthioacetaldehyde dimethyl acetal. Organic Preparations and Procedures International, 2014, 46(6), 559–564.
http://dx.doi.org/10.1080/00304948.2014.963460
13. Kline, G. B. and Cox, S. H. A new synthesis of DL-glutamine. J. Org. Chem., 1961, 26, 1854–1856.
http://dx.doi.org/10.1021/jo01065a040
14. Dutta, A. S. and Morley, J. S. Polypeptides. Part XIII. Preparation of α-aza-amino-acid (carbazic acid) derivatives and intermediates for the preparation of α-aza-peptides. J. Chem. Soc., Perkin Trans., 1975, 1, 1712–1720.
http://dx.doi.org/10.1039/p19750001712
15. Kost, A. N. and Sagitullin, R. S. Recations of hydrazine derivatives. 37. Synthesis of alkylhydrazines and pyrazole esters of dimethylcarbamic acid. J. Gen. Chem. (USSR), 1963, 33, 867–874.
16. Ou, J., Zhu, X., Wang, L., Xu, C., Liu, F., Ren, L. et al. Synthesis and bioactivity study of 2-acylamino-substituted N ¢-benzylbenzohydrazide derivatives. J. Agric. Food Chem., 2012, 60, 10942–10951.
http://dx.doi.org/10.1021/jf303376t
17. Liu, R., Zhang, P., Gan, T., and Cook, J. M. Regiospecific bromination of 3-methylindoles with NBS and its application to the concise synthesis of optically active unusual tryptophans present in marine cyclic peptides. J. Org. Chem., 1997, 62, 7447–7456.
http://dx.doi.org/10.1021/jo971067g
18. Meyer, V. Zur Kenntnis der Ammonium-Verbindungen. Ber. dtsch. chem. Ges., 1877, 10, 309–315.
http://dx.doi.org/10.1002/cber.18770100191
19. Carpino, L. A. and Han, G. Y. The 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.
http://dx.doi.org/10.1021/jo00795a005
20. Rabjohn, N. The synthesis and reactions of disazodicarboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.
http://dx.doi.org/10.1021/ja01183a089
21. Hofmann, K., Lindenmann, A., Magee, M. Z., and Khan, N. H. Studies on polypeptides. III Novel routes to α-amino acid and polypeptide hydrazides. J. Am. Chem. Soc., 1952, 74, 470–476.
http://dx.doi.org/10.1021/ja01122a057
22. Melendez, R. E. and Lubell, W. D. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-Aza1-dipeptides in peptide synthesis. J. Am. Chem. Soc., 2004, 126(21), 6759–6764.
http://dx.doi.org/10.1021/ja039643f
23. Mäeorg, U., Pehk, T., and Ragnarsson, U. Synthesis of substituted hydrazines from triprotected precursors. Acta Chem. Scan., 1999, 53, 1127–1133.
http://dx.doi.org/10.3891/acta.chem.scand.53-1127
24. Kochi, J. K. and Hammond, G. S. Benzyl tosylates. I. Preparation and properties. J. Am. Chem. Soc., 1953, 75, 3443–3444.
http://dx.doi.org/10.1021/ja01110a042
25. Kornblum, N., Smiley, R. A., Blackwood, R. K., and Iffland, D. C. The Mechanism of the reaction of silver nitrite with alkyl halides. The contrasting reactions of silver and alkali metal salts with alkyl halides. The alkylation of ambident anions. J. Am. Chem. Soc., 1955, 77, 6269–6280.
http://dx.doi.org/10.1021/ja01628a064
26. Takatori, K., Lee, M., and Kajiwara, M. Asymmetric synthesis of L-[3-13C]tryptophan. Current Radiopharmaceuticals, 2008, 1, 122–124.
http://dx.doi.org/10.2174/1874471010801020122
27. Ito, H. and Ichimura, K. 4-(tert-Butoxycarbonyloxy)benzyl p-toluenesulfonates as acid amplifiers applicable to chemically amplified photoresists. Macromol. Chem. Phys., 2000, 201, 132–138.
http://dx.doi.org/10.1002/(SICI)1521-3935(20000101)201:1<132::AID-MACP132>3.0.CO;2-3
28. Ruenitz, P. C., Arrendale, R. F., Schmidt, W. F., Carolyn, B., Thompson, C. B., and Nanavati, N. T. Phenolic metabolites of clomiphene: [(E,Z)-2-[4-(1,2-diphenyl-2-chlorovinyl)phenoxy]ethyl]diethylamine. Preparation, electrophilicity, and effects in MCF 7 breast cancer cells. J. Med. Chem., 1989, 32, 192–197.
http://dx.doi.org/10.1021/jm00121a035
29. Brun, K. A., Linden, A., and Heimgartner, H. New optically active 2H-azirin-3-amines as synthons for enantiomerically pure 2,2-disubstituted glycines: synthesis of synthons for Tyr(2Me) and Dopa(2Me), and their incorporation into dipeptides. HeIv. Chim. Acta, 2002, 85, 3422–3443.
http://dx.doi.org/10.1002/1522-2675(200210)85:10<3422::AID-HLCA3422>3.0.CO;2-N
30. Dourlat, J., Liu, W.-Q., Nohad Gresh, N., and Garbay, C. Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17, 2527–2530.
http://dx.doi.org/10.1016/j.bmcl.2007.02.016
31. James, P. N. and Snyder, H. R. Organic Syntheses. Coll. Vol. 4, 1963.
32. Takeda, T. and Mukayama, T. Asymmetric total synthesis of indolmycin. Chem. Lett., 1980, 163–166.http://dx.doi.org/10.1246/cl.1980.163