Most theoretical results about turbulent mixing have been obtained for ideal flows that are delta-correlated in time. As is often believed, those ideal flows are, with regard to mixing, very similar to real flows with a finite correlation time. However, recent results show that these two cases may differ considerably. In this article we study the effects of finite correlation time in a chaotic smooth statistically isotropic two-dimensional velocity field. As mixing is predominantly determined by the statistics of the stretching of material elements (e.g. lines “painted” onto a liquid), in this article we focus on the characteristics describing such stretching: finite-time Lyapunov exponents and the Lyapunov dimension. For these quantities, we derive analytical expressions as functions of the correlation time and the compressibility of the velocity field, and we investigate these expressions numerically. The results agree well with numerical results of other authors, and are useful for understanding several physical phenomena, e.g. patchiness of pollution spreading on an ocean and kinematic magnetic dynamos.
1. Falkovich, G., Gawędzki, K., and Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys., 2001, 73, 913–975.
http://dx.doi.org/10.1103/RevModPhys.73.913
2. Sreenivasan, K. R. and Antonia, R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 1997, 29, 435–472.
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
3. Warhaft, Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 2000, 32, 203–240.
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
4. Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech., 2005, 37, 329–356.
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122015
5. Shraiman, B. I. and Siggia, E. D. Scalar turbulence. Nature, 2000, 405, 639–646.
http://dx.doi.org/10.1038/35015000
6. Toschi, F. and Bodenschatz, E. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 2009, 41, 375–404.
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
7. Grabowski, W. W. and Wang, L.-P. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 2013, 45, 293–324.
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
8. Brandenburg, A. and Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 2005, 417, 1–209.
http://dx.doi.org/10.1016/j.physrep.2005.06.005
9. Gruzinov, A., Cowley, S., Espa, S., and Sudan, R. Small-scale field dynamo. Phys. Rev. Lett., 1996, 77, 4342–4345.
http://dx.doi.org/10.1103/PhysRevLett.77.4342
10. Kraichnan, R. H. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett., 1994, 72, 1016–1019.
http://dx.doi.org/10.1103/PhysRevLett.72.1016
11. Boffetta, G., Davoudi, J., Eckhardt, B., and Schumacher, J. Lagrangian tracers on a surface flow: the role of time correlations. Phys. Rev. Lett., 2004, 93, 134501.
http://dx.doi.org/10.1103/PhysRevLett.93.134501
12. Larkin, J. and Goldburg, W. I. Decorrelating a compressible turbulent flow: an experiment. Phys. Rev. E, 2010, 82, 016301.
http://dx.doi.org/10.1103/PhysRevE.82.016301
13. Gustavsson, K. and Mehlig, B. Lyapunov exponents for particles advected in compressible random velocity fields at small and large Kubo numbers. J. Stat. Phys., 2013, 153, 813–827.
http://dx.doi.org/10.1007/s10955-013-0848-z
14. Le Jan, Y. On isotropic brownian motions. Z. Wahrscheinlichkeitstheor. Verwandte Geb., 1985, 70, 609.
http://dx.doi.org/10.1007/BF00531870
15. Larkin, J., Bandi, M., Pumir, A., and Goldburg, W. Power-law distributions of particle concentration in free-surface flows. Phys. Rev. E, 2009, 80, 066301.
http://dx.doi.org/10.1103/PhysRevE.80.066301
16. Cressman, J. R., Davoudi, J., Goldburg, W. I., and Schumacher, J. Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys., 2004, 6, 53.
http://dx.doi.org/10.1088/1367-2630/6/1/053
17. Bec, J., Gawędzki, K., and Horvai, P. Multifractal clustering in compressible flows. Phys. Rev. Lett., 2004, 92, 224501.
http://dx.doi.org/10.1103/PhysRevLett.92.224501
18. Kalda, J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett., 2000, 84, 471–474.
http://dx.doi.org/10.1103/PhysRevLett.84.471
19. Kalda, J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett., 2007, 98, 064501.
http://dx.doi.org/10.1103/PhysRevLett.98.064501
20. Kalda, J. and Morozenko, A. Origin of the small-scale anisotropy of the passive scalar fluctuations. In Advances in Turbulence: Proceedings of the 12th EUROMECH European Turbulence Conference, September 7–10, 2009, Marburg, Germany. Springer Proceedings in Physics, 2009, 541–544.
21. Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I. Integrals and Series: Elementary Functions. Nauka, Moskva, 1981 (in Russian).
22. Kalda, J., Soomere, T., and Giudici, A. On the finite-time compressibility of the surface currents in the Gulf of Finland, the Baltic Sea. J. Mar. Syst., 2014, 129, 56–65.
http://dx.doi.org/10.1016/j.jmarsys.2012.08.010
23. Kerstein, A. R. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech., 1991, 231, 361–394.
http://dx.doi.org/10.1017/S0022112091003439
24. Kerstein, A. R. One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech., 1999, 392, 277–334.
http://dx.doi.org/10.1017/S0022112099005376
http://dx.doi.org/10.1088/1367-2630/10/9/093003