ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Numerical simulation of the propagation of ship-induced Riemann waves of depression into the Venice Lagoon; pp. 22–35
PDF | doi: 10.3176/proc.2015.1.04

Authors
Artem Rodin, Tarmo Soomere, Kevin E. Parnell, Luca Zaggia
Abstract

Large in situ measured ship-induced depression waves (Bernoulli wakes) in the Malamocco–Marghera industrial channel of the Venice Lagoon are interpreted as long-living strongly nonlinear Riemann (simple) waves of depression. The properties of these depressions are numerically replicated using nonlinear shallow water theory and the CLAWPACK software. The further behaviour of measured depressions is analysed by means of replicating the vessel-induced disturbances with the propagation of initially smooth free waves. It is demonstrated that vessel-driven depressions of substantial height (> 0.3 m) often propagate for more than 1 km from the navigation channel into areas of the lagoon of approximately 2 m water depth. As a depression wave propagates into the lagoon, its front slope becomes gradually less steep, but the rear slope preserves an extremely steep bore-like appearance and the amplitude becomes almost independent of the initial properties of the disturbance. Analysis suggests that even modest ships in terms of their size, sailing speed, and blocking coefficient may generate deep depressions that travel as compact and steep entities resembling asymmetric solitary waves over substantial distances into shallow water adjacent to navigation channels. Their impact may substantially increase the environmental impact of ship wakes in this and similar water bodies.

References

Akylas, T. 1984. On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech., 141, 455–466.
http://dx.doi.org/10.1017/S0022112084000926

Ali, M. M., Murphy, K. J., and Langendorff, J. 1999. Inter­relations of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia, 415, 93–100.
http://dx.doi.org/10.1023/A:1003829516479

Arcas, D. and Segur, H. 2012. Seismically generated tsunamis. Phil. Trans. R. Soc., 370, 1505–1542.
http://dx.doi.org/10.1098/rsta.2011.0457

Baines, P. G. 1997. Topographic Effects in Stratified Flows. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge, UK.

Balzerek, H. and Kozlowski, J. 2007. Ship-induced riverbank and harbour damage. Evidence for claims processing. Hydro International, 11(8), 18–21.

Benjamin, T. B. and Lighthill, M. J. 1954. On cnoidal waves and bores. Proc. R. Soc. London A, 224, 448–460.
http://dx.doi.org/10.1098/rspa.1954.0172

Brambati, A., Carbognin, L., Quaia, T., Teatini, P., and Tosi, L. 2003. The Lagoon of Venice: geological setting, evolu­tion and land subsidence. Episodes, 26(3), 264–265.

Carrier, G. F., Wu, T. T., and Yeh, H. 2003. Tsunami run-up and drawdown on a plane beach. J. Fluid Mech., 475, 79–99.
http://dx.doi.org/10.1017/S0022112002002653

Constantine, T. 1961. On the movement of ships in restricted waterways. J. Fluid Mech., 9, 247–256.
http://dx.doi.org/10.1017/S0022112060001080

Darmon, A., Benzaquen, M., and Raphael, E. 2014. Kelvin wake pattern at large Froude numbers. J. Fluid Mech., 738, Art. No. R3.

Defendi, V., Kovačević, V., Zaggia, L., and Arena, F. 2010. Estimating sediment transport from acoustic measure­ments in the Venice Lagoon inlets. Cont. Shelf Res., 30, 883–893.
http://dx.doi.org/10.1016/j.csr.2009.12.004

Didenkulova, I. I., Zahibo, N., Kurkin, A. A., and Peli­novsky, E. N. 2006. Steepness and spectrum of a nonlinearly deformed wave on shallow waters. Izv. Atmos. Ocean. Phys., 42, 773–776.
http://dx.doi.org/10.1134/S0001433806060119

Didenkulova, I., Pelinovsky, E., and Rodin, A. 2011a. Non­linear interaction of large-amplitude unidirectional waves in shallow water. Estonian J. Eng., 17, 289–300.
http://dx.doi.org/10.3176/eng.2011.4.02

Didenkulova, I., Pelinovsky, E., and Soomere, T. 2011b. Can the waves generated by fast ferries be a physical model of tsunami? Pure Appl. Geophys., 168, 2071–2082.
http://dx.doi.org/10.1007/s00024-011-0289-z

Didenkulova, I. I., Pelinovsky, E. N., and Didenkulov, O. I. 2014. Run-up of long solitary waves of different polarities on a plane beach. Izv. Atmos. Ocean. Phys., 50, 532–538.
http://dx.doi.org/10.1134/S000143381405003X

El-Kader, F. A., El-Soud, M. S. A., El-Serafy, K., and Hassan, E. A. 2003. An integrated navigation system for Suez Canal (SCINS). J. Navigation, 56, 241–255.
http://dx.doi.org/10.1017/S0373463303002194

Engelbrecht, J. K., Fridman, V. E., and Pelinovski, E. N. 1988. Nonlinear Evolution Equations. Pitman Research Notes in Mathematics Series, No. 180. Longman, London, 1988.

Ertekin, R. C., Webster, W. C., and Wehausen, J. V. 1984. Ship-generated solitons. In Proceedings of 15th Symposium on Naval Hydrodynamics, Hamburg, Federal Republic of Germany, September 2–7. National Academy Press, Washington, D.C., pp. 347–364.

Ertekin, R. C., Webster, W. C., and Wehausen, J. V. 1986. Waves caused by a moving disturbance in a shallow channel of finite width. J. Fluid Mech., 169, 275–292.
http://dx.doi.org/10.1017/S0022112086000630

Fernando, H. J. S., Braun, A., Galappatti, R., Ruwanpura, J., and Wirisinghe, S. C. 2008. Tsunamis: manifestation and aftermath. In Large Scale Disasters. Cambridge University Press, Cambridge, pp. 258–292.

Forsman, B. 2001. From bow to beach. SSPA Highlights, No. 3/2001, 4–5.

Gelinas, M., Bokuniewicz, H., Rapaglia, J., and Lwiza, K. M. M. 2013. Sediment resuspension by ship wakes in the Venice Lagoon. J. Coast. Res., 29, 8–17.
http://dx.doi.org/10.2112/JCOASTRES-D-11-00213.1

Göransson, G., Larson, M., and Althage, J. 2014. Ship-generated waves and induced turbidity in the Göta Älv River in Sweden. J. Waterw. Port Coast. Ocean Eng., 140(3), 04014004.
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000224

Gourlay, T. P. 2001. The supercritical bore produced by a high-speed ship in a channel. J. Fluid Mech., 434, 399–409.
http://dx.doi.org/10.1017/S002211200100372X

Gourlay, T. P. 2003. Ship squat in water of varying depth. Int. J. Marit. Eng., 145, 1–8.

Gourlay, T. P. 2006. A simple method for predicting the maximum squat of a high-speed displacement ship. Mar. Technol. Soc. J., 43, 146–151.

Gourlay, T. P. and Cook, S. M. 2004. Flow past a ship radiating a bore in a channel. Proc. Inst. Mech. Eng. M. J. Eng. Marit. Environ., 218, 31–40.

Gourlay, T. P. and Tuck, E. O. 2001. The maximum sinkage of a ship. J. Ship Res., 45, 50–58.

Graff, W. 1962. Untersuchungen über die Ausbildung des Wellenwiderstandes im Bereich der Stauwellen­geschwindig­keit in flachem, seitlich beschränktem Fahrwasser. Schiffstechnik, 9, 110–122.

Grimshaw, R. H. J. and Smyth, N. 1986. Resonant flow of a stratified flow over topography. J. Fluid Mech., 169, 429–464.
http://dx.doi.org/10.1017/S002211208600071X

Grimshaw, R. H. J., Hunt, J. C. R., and Chow, K. W. 2014. Changing forms and sudden smooth transitions of tsunami waves. J. Ocean Eng. Mar. Energy,
http://dx.doi.org/10.1007/s40722-014-0011-1

Hamer, M. 1999. Solitary killers. New Sci., 163(2201), 18–19.

Krylov, A. N. 2003. On the wave resistance and large ship waves. In My Memoirs. Politekhnika, Sankt-Peterburg, pp. 364–368 (in Russian).

Kurennoy, D., Soomere, T., and Parnell, K. E. 2009. Vari­ability in the properties of wakes generated by high-speed ferries. J. Coast. Res., SI 56, 519–523.

Kuznetsov, N., Maz¢ya, V., and Vainberg, B. 2002. Linear Water Waves: A Mathematical Approach. Cambridge University Press.

Lee, S. J., Yates, G. T., and Wu, T. Y. 1989. Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances. J. Fluid Mech., 199, 569–593.
http://dx.doi.org/10.1017/S0022112089000492

LeVeque, R. J. 2004. Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press.

Lighthill, J. 1978. Waves in Fluids. Cambridge University Press.

Macfarlane, G. J., Duffy, J. T., and Bose, N. 2014. Rapid assessment of boat-generated waves within sheltered waterways. Aust. J. Civil Eng., 12(1), 31–40.
http://dx.doi.org/10.7158/C13-029.2014.12.1

Madricardo, F. and Donnici, S. 2014. Mapping past and recent landscape modifications in the Lagoon of Venice through geophysical surveys and historical maps. Anthropocene, 6, 86–96.
http://dx.doi.org/10.1016/j.ancene.2014.11.001

Millward, A. 1996. A review of the prediction of squat in shallow water. J. Navigation, 49, 77–88.
http://dx.doi.org/10.1017/S0373463300013126

Naghdi, P. M. and Rubin, M. B. 1984. On the squat of a ship. J. Ship Res., 28, 107–117.

Neuman, D., Tapio, E., Haggard, D., Laws, K., and Bland, R. 2001. Observation of long waves generated by ferries. Can. J. Remote Sens., 27, 361–370.
http://dx.doi.org/10.1080/07038992.2001.10854878

Newman, J. N. 1977. Marine Hydrodynamics. The MIT Press.

Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R., and Yang, C. 2014. Why can ship wakes appear narrower than Kelvin’s angle? Eur. J. Mech. B/Fluids, 46, 164–171.
http://dx.doi.org/10.1016/j.euromechflu.2014.03.012

Parnell, K. E. and Kofoed-Hansen, H. 2001. Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coast. Manage., 29, 217–237.
http://dx.doi.org/10.1080/08920750152102044

Parnell, K. E., McDonald, S. C., and Burke, A. E. 2007. Shore­line effects of vessel wakes, Marlborough Sounds, New Zealand. J. Coast. Res., SI 50, 502–506.

Parnell, K. E., Soomere, T., Zaggia, L., Rodin, A., Loren­zetti, G., Rapaglia, J., and Scarpa, G. M. 2015. Ship-induced solitary Riemann waves of depression in Venice Lagoon. Phys. Lett. A, 379(6), 555–559.
http://dx.doi.org/10.1016/j.physleta.2014.12.004

Pelinovsky, E. N. and Rodin, A. A. 2012. Transformation of a strongly nonlinear wave in a shallow-water basin. Izv. Atmos. Ocean. Phys., 48, 343–349.
http://dx.doi.org/10.1134/S0001433812020089

Peregrine, D. H. 1966. Calculations of the development of an undular bore. J. Fluid Mech., 25, 321–330.
http://dx.doi.org/10.1017/S0022112066001678

Peterson, P., Soomere, T., Engelbrecht, J., and van Groe­sen, E. 2003. Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Proc. Geoph., 10, 503–510.
http://dx.doi.org/10.5194/npg-10-503-2003

Rabaud, M. and Moisy, F. 2013. Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett., 110, Art. No. 214503.
http://dx.doi.org/10.1103/PhysRevLett.110.214503

Rapaglia, J., Zaggia, L., Ricklefs, K., Gelinas, M., and Boku­niewicz, H. 2011. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy. J. Mar. Syst., 85, 45–56.
http://dx.doi.org/10.1016/j.jmarsys.2010.11.005

Ravens, T. M. and Thomas, R. C. 2008. Ship wave-induced sedimentation of a tidal creek in Galveston Bay. J. Waterw. Port Coast. Ocean Eng., 134, 21–29.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(21)

Rudenko, O. and Soluyan, S. 1977. Theoretical Background of Nonlinear Acoustics. Plenum, New York, 1977.
http://dx.doi.org/10.1007/978-1-4899-4794-9

Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., and Fontolan, G. 2010. Sediment budget in the Lagoon of Venice, Italy. Cont. Shelf Res., 30, 934–949.
http://dx.doi.org/10.1016/j.csr.2009.07.002

Sheremet, A., Gravois, U., and Tian, M. 2013. Boat-wake statistics at Jensen Beach, Florida. J. Waterw. Port Coast. Ocean Eng., 139, 286–294.
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000182

Sommerfeld, A. 1949. Partial Differential Equations in Physics. Elsevier.

Soomere, T. 2005. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environ. Fluid Mech., 5, 293–323.
http://dx.doi.org/10.1007/s10652-005-5226-1

Soomere, T. 2007. Nonlinear components of ship wake waves. Appl. Mech. Rev., 60, 120–138.
http://dx.doi.org/10.1115/1.2730847

Soomere, T., Parnell, K. E., and Didenkulova, I. 2011. Water transport in wake waves from high-speed vessels. J. Mar. Syst., 88, 74–81.
http://dx.doi.org/10.1016/j.jmarsys.2011.02.011

Sorensen, R. M. 1973. Ship-generated waves. Adv. Hydrosci., 9, 49–83.
http://dx.doi.org/10.1016/B978-0-12-021809-7.50007-9

Stumbo, S., Fox, K., Dvorak, F., and Elliot, L. 1999. The prediction, measurement, and analysis of wake wash from marine vessels. Mar. Technol., 36, 248–260.

Torsvik, T. and Soomere, T. 2008. Simulation of patterns of wakes from high-speed ferries in Tallinn Bay. Estonian J. Eng., 14, 232–254.
http://dx.doi.org/10.3176/eng.2008.3.04

Torsvik, T., Didenkulova, I., Soomere, T., and Parnell, K. E. 2009a. Variability in spatial patterns of long nonlinear waves from fast ferries in Tallinn Bay. Nonlinear Proc. Geoph., 16, 351–363.
http://dx.doi.org/10.5194/npg-16-351-2009

Torsvik, T., Pedersen, G., and Dysthe, K. 2009b. Waves generated by a pressure disturbance moving in a channel with a variable cross-sectional topography. J. Waterw. Port Coast. Ocean Eng., 135, 120–123.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2009)135:3(120)

Torsvik, T., Soomere, T., Didenkulova, I., and Sheremet, A. 2015. Identification of ship wake structures by a time-frequency method. J. Fluid Mech., 765, 229–251.
http://dx.doi.org/10.1017/jfm.2014.734

Varyani, K. 2006. Full scale study of the wash of high speed craft. Ocean Eng., 33, 705–722.
http://dx.doi.org/10.1016/j.oceaneng.2005.05.007

Wehausen, J. V. 1973. The wave resistance of ships. Adv. Appl. Mech., 13, 93–245.
http://dx.doi.org/10.1016/S0065-2156(08)70144-3

Whitham, G. B. 1974. Linear and Nonlinear Waves. Wiley, New York.

Zahibo, N., Didenkulova, I., Kurkin, A., and Pelinovsky, E. 2008. Steepness and spectrum of nonlinear deformed shallow water wave. Ocean Eng., 35, 47–52.
http://dx.doi.org/10.1016/j.oceaneng.2007.07.001

Back to Issue