The separation of high-molecular compounds is very difficult, if possible at all, under isocratic conditions. For this gradient elution is needed. The theory of gradient elution for small molecules is well established; however, its applications to reversed-phase gradient separations of biopolymers are not straightforward because of specific problems, such as slow diffusion, limited accessibility of the stationary phase for larger molecules, or possible sample conformation changes during the elution.
We used high performance liquid chromatography to investigate the reversed-phase chromatographic behaviour of 14 proteins. The first step was the determination of the experimental data, and then these data were used to predict gradient retention times. A water–organic solvent–trifluoroacetic acid system was used to examine the influence of experimental parameters. The chromatographic results from four C18-chain-length supports were comparable.
1. Aguilar, M. I. and Hearns, M. T. W. High resolution reversed phase high performance liquid chromatography of peptides and proteins. Meth. Enzymol., 1996, 270, 3–26.
http://dx.doi.org/10.1016/S0076-6879(96)70003-4
2. Mant, C. T. and Hodges, R. S. Analysis of peptides by high performance liquid chromatography. Meth. Enzymol., 1996, 271, 3–50.
http://dx.doi.org/10.1016/S0076-6879(96)71003-0
3. Everley, R. A. and Croley, T. R. Ultra-performance liquid chromatography/mass spectrometry of intact proteins. J. Chromatogr. A, 2008, 1192, 239–247.
http://dx.doi.org/10.1016/j.chroma.2008.03.058
4. Fekete, S., Veuthey, J. L., and Guillarme, D. New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: theory and applications. J. Pharm. Biomed., 2012, 69, 9–27.
http://dx.doi.org/10.1016/j.jpba.2012.03.024
5. Hancock, W. S., Bishop, C. A., Prestidge, R. L., Harding, D. R., and Hearn, M. T. W. Reversed phase, high-pressure liquid chromatography of peptides and proteins with ion-pairing reagents. J. Chromatogr. Sci., 1978, 200, 1168–1170.
6. Schuster, S. A., Wagner, B. M., Boyes, B. E., and Kirkland, J. J. Wider pore superficially porous particles for peptide separations by HPLC. J. Chromatogr. Sci., 2010, 48, 566–571.
http://dx.doi.org/10.1093/chromsci/48.7.566
7. Shibue, M., Mant, C. T., and Hodges, R. S. Effect of anionic ion-pairing reagent concentration (1–60 mM) on reversed-phase liquid chromatography elution behaviour of peptides. J. Chromatogr. A, 2005, 1080, 58–67.
http://dx.doi.org/10.1016/j.chroma.2005.02.047
8. Getaz, D., Hariharan, S. B., Butte, A., and Morbidelli, M. Modeling of ion-pairing effect in peptide reversed-phase chromatography. J. Chromatogr. A, 2012, 1249, 92–102.
http://dx.doi.org/10.1016/j.chroma.2012.06.005
9. Staub, A., Guillarme, D., Schappler, J., Veuthey, J. L., and Rudaz, S. Intact protein analysis in the biopharmaceutical field. J. Pharm. Biomed., 2011, 55, 810–822.
http://dx.doi.org/10.1016/j.jpba.2011.01.031
10. Jandera, P., Kučerova, Z., and Urban J. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins, J. Chromatogr. A, 2011, 1218, 8874–8889.
http://dx.doi.org/10.1016/j.chroma.2011.06.064
11. Claessens, H. A. Characterization of Stationary Phases for Reversed-phase Liquid Chromatography: Column Testing, Classification and Chemical Stability. Technische Universiteit Eindhoven, Eindhoven, 1999.
12. Snyder, L. R., Kirkland, J. J., and Dolan, J. W. Introduction to Modern Liquid Chromatography. New Jersey, Canada, 2009.
http://dx.doi.org/10.1002/9780470508183
http://dx.doi.org/10.1016/j.chroma.2012.06.066