Distinct patterns of benthic flora and fauna are produced when unstable rocky substrata are disturbed by water motion. This study investigated occurrence of disturbance-related patterns in benthic boulder habitats on the north-eastern Baltic coast. Sessile assemblages, mostly algae on tops of boulders and barnacles and bryozoans underneath, were found to differ between small (50–150 cm2 upperside surface area) and large (200–800 cm2) boulders. Densities of motile gammaridean amphipods were negatively correlated with boulder size. These patterns may be due to small boulders being displaced by water motion more frequently than large ones. Most of the barnacle shells/tests were remnant empty ones, and the proportion of empty tests and living barnacles was similar underneath small and large boulders, suggesting that degradation/removal of empty tests was not influenced by disturbance associated with boulder size. There was no consistent evidence of algae being affected by boulder size, but the tops of boulders had less algae than the edges, a pattern that is typically associated with high rates of overturning. Confirmation of disturbance as having caused these patterns and thus being an important process for structuring benthic biota in this region could be achieved by further manipulative experimentation.
Addessi, L. 1994. Human disturbance and long-term changes on a rocky intertidal community. Ecol. Appl., 4, 786–797.
http://dx.doi.org/10.2307/1942008
Anderson, M. J., Gorley, R. N., and Clarke, K. R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plymouth.
Barnes, D. K. A. 1999. The influence of ice on polar nearshore benthos. J. Mar. Biol. Assoc. UK, 79, 401–407.
http://dx.doi.org/10.1017/S0025315498000514
Beck, M. W. 1997. Inference and generality in ecology: current problems and an experimental solution. Oikos, 78, 265–273.
http://dx.doi.org/10.2307/3546293
Bucas, M., Daunys, D., and Olenin, S. 2007. Overgrowth patterns of the red algae Furcellaria lumbricalis at an exposed Baltic Sea coast: the results of a remote underwater video data analysis. Estuar. Coast. Shelf S., 75, 308–316.
http://dx.doi.org/10.1016/j.ecss.2007.04.038
Chapman, M. G. 2002. Patterns of spatial and temporal variation of macrofauna under boulders in a sheltered boulder field. Austral. Ecol., 27, 211–228.
http://dx.doi.org/10.1046/j.1442-9993.2002.01172.x
Chapman, M. G. 2011. Restoring intertidal boulder-fields as habitat for “specialist” and “generalist” animals. Restor. Ecol., 19, 1–9.
Coleman, R. A., Underwood, A. J., Benedetti-Cecchi, L., Aberg, P., Arenas, F., Arrontes, J., Castro, J., Hartnoll, R. G., Jenkins, S. R., Paula, J., Della Santina, P., and Hawkins, S. J. 2006. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia, 147, 556–564.
http://dx.doi.org/10.1007/s00442-005-0296-9
Diesing, M. and Schwarzer, K. 2006. Identification of submarine hard-bottom substrates in the German North Sea and Baltic Sea EEZ with high-resolution acoustic seafloor imaging. In Progress in Marine Conservation in Europe: NATURA 2000 Sites in German Offshore Waters (Nordheim, H., ed.), pp. 111–125. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/3-540-33291-X_7
Durr, S. and Wahl, M. 2004. Isolated and combined impacts of blue mussels (Mytilus edulis) and barnacles (Balanus improvisus) on structure and diversity of a fouling community. J. Exp. Mar. Biol. Ecol., 306, 181–195.
http://dx.doi.org/10.1016/j.jembe.2004.01.006
Foster, M. S. 1990. Organization of macroalgal assemblages in the Northeastern Pacific: the assumption of homogeneity and the illusion of generality. Hydrobiologia, 192, 21–33.
http://dx.doi.org/10.1007/BF00006225
Grzelak, K. and Kuklinski, P. 2010. Benthic assemblages associated with rocks in a brackish environment of the southern Baltic Sea. J. Mar. Biol. Assoc. UK, 90, 115–124.
http://dx.doi.org/10.1017/S0025315409991378
Herkül, K., Kotta, J., Kotta, I., and Orav-Kotta, H. 2006. Effects of physical disturbance, isolation and key macrozoobenthic species on community development, recolonization and sedimentation processes. Oceanologia, 48(S), 267–282.
Hillebrand, H. and Kahlert, M. 2001. Effects of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol. Oceanogr., 46, 1881–1898.
http://dx.doi.org/10.4319/lo.2001.46.8.1881
Kaehler, S. and McQuaid, C. D. 1999. Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. Mar. Biol., 135, 497–503.
http://dx.doi.org/10.1007/s002270050651
Kelaher, B. P., Castilla, J., and Seed, R. 2004. Intercontinental test of generality for spatial patterns among diverse molluscan assemblages in coralline algal turf. Mar. Ecol. Prog. Ser., 271, 221–231.
http://dx.doi.org/10.3354/meps271221
Kenkel, N. C. 2006. On selecting the appropriate multivariate analysis. Can. J. Plant Sci., 86, 663–676.
http://dx.doi.org/10.4141/P05-164
Kiirikki, M. and Lehvo, A. 1997. Life strategies of filamentous algae in the northern Baltic Proper. Sarsia, 82, 259–267.
Korpinen, S. and Jormalainen, V. 2008. Grazing and nutrients reduce recruitment success of Fucus vesiculosus L. (Fucales: Phaeophyceae). Estuar. Coast. Shelf S., 78, 437–444.
http://dx.doi.org/10.1016/j.ecss.2008.01.005
Kotta, J., Torn, K., Martin, G., Orav-Kotta, H., and Paalme, T. 2004. Seasonal variation in invertebrate grazing on Chara connivens and C. tomentosa in Kõiguste Bay, NE Baltic Sea. Helgoland Mar. Res., 58, 71–76.
http://dx.doi.org/10.1007/s10152-003-0170-2
Kotta, J., Kotta, I., Simm, M., Lankov, A., Lauringson, V., Põllumäe, A., and Ojaveer, H. 2006. Ecological consequences of biological invasions: three invertebrate case studies in the north-eastern Baltic Sea. Helgoland Mar. Res., 60, 106–112.
http://dx.doi.org/10.1007/s10152-006-0027-6
Kraufvelin, P., Salovius, S., Christie, H., Moy, F. E., Karez, R., and Pedersen, M. F. 2006. Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquat. Bot., 84, 199–209.
http://dx.doi.org/10.1016/j.aquabot.2005.08.008
Lauringson, V. and Kotta, J. 2006. Influence of the thin drift algal mats on the distribution of macrozoobenthos in Kõiguste Bay, NE Baltic Sea. Hydrobiologia, 554, 97–105.
http://dx.doi.org/10.1007/s10750-005-1009-4
Le Hir, M. and Hily, C. 2005. Macrofaunal diversity and habitat structure in intertidal boulder fields. Biodivers. Conserv., 14, 233–250.
http://dx.doi.org/10.1007/s10531-005-5046-0
Liversage, K. 2012. Ecology of Cryptic Habitats under Intertidal Boulders. PhD thesis. The University of Sidney.
Liversage, K. and Benkendorff, K. 2013. A preliminary investigation of diversity, abundance, and distributional patterns of chitons in intertidal boulder-fields of differing rock type in South Australia. Molluscan Research, 33, 24–33.
http://dx.doi.org/10.1080/13235818.2012.754145
Liversage, K., Cole, V. J., McQuaid, C. D., and Coleman, R. A. 2012. Intercontinental tests of the effects of habitat patch type on the distribution of chitons within and among patches in intertidal boulder field landscapes. Mar. Biol., 159, 2777–2786.
Maggi, E., Bulleri, F., Bertocci, I., and Benedetti-Cecchi, L. 2012. Competitive ability of macroalgal canopies overwhelms the effects of variable regimes of disturbance. Mar. Ecol. Prog. Ser., 465, 99–109.
http://dx.doi.org/10.3354/meps09903
Malm, T. and Isæus, M. 2005. Distribution of macroalgal communities in the central Baltic Sea. Ann. Bot. Fenn., 42, 257–266.
McGuinness, K. A. 1987a. Disturbance and organisms on boulders I. Patterns in the environment and the community. Oecologia, 71, 409–419.
http://dx.doi.org/10.1007/BF00378716
McGuinness, K. A. 1987b. Disturbance and organisms on boulders II. Causes of patterns in diversity and abundance. Oecologia, 71, 420–430.
http://dx.doi.org/10.1007/BF00378716
McGuinness, K. A. and Underwood, A. J. 1986. Habitat structure and the nature of communities on intertidal boulders. J. Exp. Mar. Biol. Ecol., 104, 97–123.
http://dx.doi.org/10.1016/0022-0981(86)90099-7
Reimer, A. A. 1976. Succession of invertebrates in vacant tests of Tetraclita stalactifera panamensis. Mar. Biol., 35, 239–251.
http://dx.doi.org/10.1007/BF00396872
Silva, A. C. F., Mendonca, V., Paquete, R., Barreiras, N., and Vinagre, C. 2014. Habitat provision of barnacle tests for overcrowded periwinkles. Mar. Ecol.,
http://dx.doi.org/10.1111/maec.12161
Smith, K. A. and Otway, N. M. 1997. Spatial and temporal patterns of abundance and the effects of disturbance on under-boulder chitons. Molluscan Research, 18, 43–57.
http://dx.doi.org/10.1080/13235818.1997.10673680
Sousa, W. P. 1979. Disturbance in marine intertidal boulder fields: the non-equilibrium maintenance of species diversity. Ecology, 60, 1225–1239.
http://dx.doi.org/10.2307/1936969
Svensson, J. R., Lindegarth, M., and Pavia, H. 2010. Physical and biological disturbances interact differently with productivity: effects on floral and faunal richness. Ecology, 91, 3069–3080.
Torn, K., Martin, G., Kotta, J., and Kupp, M. 2010. Effects of different types of mechanical disturbances on a charophyte dominated macrophyte community. Estuar. Coast. Shelf S., 87, 27–32.
http://dx.doi.org/10.1016/j.ecss.2009.12.006
Underwood, A. J. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.
Underwood, A. J. and Petraitis, P. S. 1993. Structure of intertidal assemblages in different locations: how can local processes be compared? In Species Diversity in Ecological Communities: Historical and Geographical Perspectives (Ricklefs, R. E. and Schluter, D., eds), pp. 38–51. University of Chicago Press, Chicago.
Underwood, A. J., Chapman, M. G., and Connell, S. D. 2000. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol., 250, 97–115.
http://dx.doi.org/10.1016/S0022-0981(00)00181-7
http://dx.doi.org/10.3354/ab00329