Untargeted metabolomic strategy was chosen to investigate as many small metabolites as possible in a collection of 13 varieties of conventionally grown spring and winter wheat and organic wheat (Triticum aestivum). Metabolites were separated by high-performance liquid chromatography on a reversed-phase column (RP–HPLC) coupled with electrospray ionization tandem mass spectrometry (ESI–MS/MS). The procedure includes extraction of metabolites followed by chromatographic separation using the linear gradient of aqueous formic acid and acetonitrile with subsequent identification of compounds by MS/MS. Discrimination of the metabolomic patterns of different wheat varieties was achieved by principal component analysis (PCA). Results of PCA indicated clear differences in the patterns of wheat varieties.
The winter wheat grown in conventional conditions and the spring wheat grown in organic conditions differed from the spring wheat grown in conventional conditions by the higher content of carbohydrates. It could be explained by osmotic stress resistance. Varieties grown under organic conditions could be well distinguished from others by the results of PCA, which points to the existence of an impact of different farming systems.
1. Lammerts van Bueren, E. T. Challenging new concepts and strategies for organic plant breeding and propagation. In Eucarpia Leafy Vegetables 2003. Centre for Genetic Resources, Wageningen, 2003, 17–22.
2. Yu, L. (ed.). Wheat Antioxidants. John Wiley & Sons, Inc, New Jersey: E-Publishing Inc, 2007.
3. Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G. et al. Developments in breeding cereals for organic agriculture. Euphytica, 2008, 163, 323–346.
http://dx.doi.org/10.1007/s10681-008-9690-9
4. Mpofu, A., Sapirstein, H. D., and Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agr. Food Chem., 2006, 54, 1265–1270.
http://dx.doi.org/10.1021/jf052683d
5. Irmak, S., Jonnala, R. S., and MacRitchie, F. Effect of genetic variation on phenolic acid and policonasol contents of Pegaso wheat lines. J. Cereal Sci., 2008, 48, 20–26.
http://dx.doi.org/10.1016/j.jcs.2007.07.007
6. Vaher, M., Matso, K., Levandi, T., Helmja, H., and Kaljurand, M. Phenolic compounds and antioxidant activity of the bran, flour and whole grain of different wheat varieties. Proc. Chem., 2010, 2, 76–82.
http://dx.doi.org/10.1016/j.proche.2009.12.013
7. Ingver, A., Tamm, I., and Tamm, Ü. Effect of organic and conventional production on yield and quality of spring cereals. Agron. Res., 2009, 7, 552–527.
8. Fernie, A. R. and Schauer, N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet., 2008, 25, 39–48.
http://dx.doi.org/10.1016/j.tig.2008.10.010
9. Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., and Rodrick, G. E. Metabolomic analysis in food science. A review. Trends Food Sci. Technol., 2009, 20, 557–566.
http://dx.doi.org/10.1016/j.tifs.2009.07.002
10. Levandi, T., Leon, C., Kaljurand, M., Garcia-Canas, V., and Cifuentes, A. Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal. Chem., 2008, 80, 6329–6335.
http://dx.doi.org/10.1021/ac8006329
11. García-Villalba, R., León, C., Dinelli, G., Segura-Carretero, A., Fernández-Gutiérrez, A., Garcia-Cañas, V., and Cifuentes, A. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis–time-of-flight mass spectrometry. J. Chromatogr. A, 2008, 1195, 164–173.
http://dx.doi.org/10.1016/j.chroma.2008.05.018
12. Dinelli, G., Segura Carretero, A., Di Silvestro, R., Marotti, I., Fu, S., Benedettelli, S. et al. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2009, 1216, 7229–7240.
http://dx.doi.org/10.1016/j.chroma.2009.08.041
13. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., and Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol., 2000, 18, 1157–1161.
http://dx.doi.org/10.1038/81137
14. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Thomas, L., Willmitzer, L., and Fernie, A. R. Metabolomic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 2001, 13, 11–29.
http://dx.doi.org/10.1105/tpc.13.1.11
15. Grata, E., Boccard, J., Guillarme, D., Glauser, G., Carrupt, P. A., Farmer, E. E. et al. UPLC-TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J. Chromatogr. B, 2008, 871, 261–270.
http://dx.doi.org/10.1016/j.jchromb.2008.04.021
16. Krishnan, P., Kruger, N. J., and Ratsliffe, R. G. Metabolite fingerprinting and profiling in plants using NMR. J. Experim. Bot., 2005, 56, 255–265.
http://dx.doi.org/10.1093/jxb/eri010
17. Last, R. L., Jones, A. D., and Shachar-Hill, Y. Towards the plant metabolome and beyond. Nat. Rev. Mol. Cell Biol., 2007, 8, 167–174.
http://dx.doi.org/10.1038/nrm2098
18. Warwick, B. D. and David, I. E. Metabolomics: current analytical platforms and methodologies. Anal. Chem., 2005, 24(4), 285–294.
19. Kvasnicka, F. Capillary electrophoresis in food authenticity. J. Sep. Sci., 2005, 28, 813–825.
http://dx.doi.org/10.1002/jssc.200500054
20. Oikawa, A., Matsuda, F., Kusano, M., Okazaki, Y., and Saito, K. Rice metabolomics. Rice, 2008, 1, 63–71.
http://dx.doi.org/10.1007/s12284-008-9009-4
21. Berrueta, L. A., Alonso-Salces, R. M., and Heberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A, 2007, 1158, 196–214.
http://dx.doi.org/10.1016/j.chroma.2007.05.024
22. Levandi, T., Püssa, T., Vaher, M., Toomik, P., and Kaljurand, M. Oxidation products of free polyunsaturated fatty acids in wheat varieties. Eur. J. Lipid Sci. Technol., 2009, 111(7), 715–722.
http://dx.doi.org/10.1002/ejlt.200800286
23. Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K., and Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agr. Food Chem., 2006, 54, 8301–8306.
http://dx.doi.org/10.1021/jf0615451
24. Taylor, V. F., March, R. E., Longerich, H. P., and Stadey, C. J. A mass spectrometric study of glucose, sucrose and fructose using an inductively coupled plasma and electrospray ionization. Int. J. Mass Spectrom., 2005, 243, 71–84.
http://dx.doi.org/10.1016/j.ijms.2005.01.001
25. Dinelli, G., Segura Carretero, A., Di Silvestro, R., Marotti, I., Arraez-Roman, D., Benedettelli, S. et al. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2011, 1218, 7670–7768.
http://dx.doi.org/10.1016/j.chroma.2011.05.065
26. Asenstorfer, R. E., Wang, Y., and Mares, D. J. Chemical structure of flavonoid compounds in wheat (Triticum aestivum L.) flour that contribute to the yellow colour of Asian alkaline noodles. J. Cereal Sci., 2006, 43, 108–119.
http://dx.doi.org/10.1016/j.jcs.2005.09.001
27. Gu, D., Yang, Y., Abdulla, R., and Aisa, H. A. Characterization and identification of chemical compositions in the extract of Artemisia rupestris L. by liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry. Rapid Comm. Mass Spectrom., 2012, 26, 83–100.
http://dx.doi.org/10.1002/rcm.5289
28. Figueirinha, A., Paranhos, A., Perez-Alonso, J. J., Santos-Buelga, C., and Batista, M. T. Cymbopogon citratus leaves: characterisation of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem., 2008, 110, 718–728.
http://dx.doi.org/10.1016/j.foodchem.2008.02.045
http://dx.doi.org/10.1016/j.foodchem.2010.12.033