ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Transformation of an irregular wave field along a quartic bottom profile; pp. 155–160
PDF | doi: 10.3176/proc.2013.3.01

Authors
Ira Didenkulova, Efim Pelinovsky
Abstract

Random wave transformation in the basin of decreasing depth is studied for the case of a quartic bottom profile. The advantage of this bottom profile is that waves can propagate along it without inner reflection even if the bottom slope is not small. Wave transformation is studied analytically in the framework of shallow-water theory. Its rigorous solution is obtained in the class of random functions. The correlation function and its spectrum (energetic wave spectrum) are calculated. The behaviour of wave spectrum transformation in a basin of decreasing depth is studied in detail. It is demonstrated that the spectrum becomes upshifted while approaching the coast, with its high-frequency asymptotic ω –3.

References

Akhmediev, N. and Pelinovsky, E. 2010. Editorial – Intro­ductory remarks on “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?” Eur. Phys. J. Spec. Top., 185, 1–4.
http://dx.doi.org/10.1140/epjst/e2010-01233-0

Bluman, G. and Kumei, S. 1987. On invariance properties of the wave equation. J. Math. Phys., 28, 307–318.
http://dx.doi.org/10.1063/1.527659

Cally, P. S. 2012. Alfvén reflection and reverberation in the solar atmosphere. Sol. Phys., 280, 33–50.
http://dx.doi.org/10.1007/s11207-012-0052-3

Clements, D. L. and Rogers, C. 1975. Analytic solution of the linearized shallow-water wave equations for certain continuous depth variations. J. Australian Math. Soc., B19, 81–94.

Choi, B. H., Pelinovsky, E., Kim, D. C., Didenkulova, I., and Woo, S. B. 2008. Two- and three-dimensional com­puta­tion of solitary wave runup on non-plane beach. Nonlin. Processes Geophys., 15, 489–502.
http://dx.doi.org/10.5194/npg-15-489-2008

Didenkulova, I. and Pelinovsky, E. 2009. Non-dispersive traveling waves in strongly inhomogeneous water channels. Phys. Lett. A., 373, 3883–3887.
http://dx.doi.org/10.1016/j.physleta.2009.08.051

Didenkulova, I. and Pelinovsky, E. 2010. Travelling water waves along a quartic bottom profile. Proc. Estonian Acad. Sci., 59, 166–171.
http://dx.doi.org/10.3176/proc.2010.2.16

Didenkulova, I. and Pelinovsky, E. 2011. Runup of tsunami waves in U-shaped bays. Pure Appl. Geophys., 168, 1239–1249.
http://dx.doi.org/10.1007/s00024-010-0232-8

Didenkulova, I. and Pelinovsky, E. 2012. Nonlinear wave effects at the nonreflecting beach. Nonlin. Processes Geophys., 19, 1–8.
http://dx.doi.org/10.5194/npg-19-1-2012

Didenkulova, I., Pelinovsky, E., and Soomere, T. 2008. Exact travelling wave solutions in strongly inhomogeneous media. Estonian J. Engng., 14, 220–231.
http://dx.doi.org/10.3176/eng.2008.3.03

Didenkulova, I., Pelinovsky, E., and Soomere, T. 2009. Long surface wave dynamics along a convex bottom. J. Geophys. Res. – Oceans, 114, C07006.
http://dx.doi.org/10.1029/2008JC005027

Dingemans, M. W. 1996. Water Wave Propagation Over Uneven Bottom. World Scientific, Singapore.

Grimshaw, R., Pelinovsky, D., and Pelinovsky, E. 2010. Homogenization of the variable-speed wave equation. Wave Motion, 47, 496–507.
http://dx.doi.org/10.1016/j.wavemoti.2010.03.001

Gurbatov, S. N., Malakhov, A. N., and Saichev, A. I. 1991. Nonlinear Random Waves and Turbulence in Non­dispersive Media: Waves, Rays, Particles. Manchester, MUP.

Ibragimov, N. H. and Rudenko, O. V. 2004. Principle of an a priori use of symmetries in the theory of nonlinear waves. Acoust. Phys., 50, 406–419.
http://dx.doi.org/10.1134/1.1776218

LeBlond, P. H. and Mysak, L. A. 1978. Waves in the Ocean. Elsevier, Amsterdam.

Liu, P. L.-F., Yeh, H., and Synolakis, C. 2008. Advanced Numerical Models For Simulating Tsunami Waves and Runup. World Scientific, Singapore.
http://dx.doi.org/10.1142/9789812790910

Massel, S. R. 1989. Hydrodynamics of Coastal Zones. Elsevier, Amsterdam.

Massel, S. R. 1996. Ocean Surface Waves; Their Physics and Prediction. World Scientific, Singapore.
http://dx.doi.org/10.1142/2285

Mei, C. C. 1983. The Applied Dynamics of Ocean Surface Waves. J. Wiley and Sons, New York.

Mei, C. C., Stiassnie, M., and Yue, D. K.-P. 2005. Theory and Applications of Ocean Surface Waves. World Scientific, Singapore.

Nikolkina, I. and Didenkulova, I. 2011. Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci., 11, 2913–2924.
http://dx.doi.org/10.5194/nhess-11-2913-2011

Nikolkina, I. and Didenkulova, I. 2012. Catalogue of rogue waves reported in media in 2006–2010. Nat. Hazards, 61, 989–1006.
http://dx.doi.org/10.1007/s11069-011-9945-y

Pelinovsky, E. N. 1996. Hydrodynamics of Tsunami Waves. Institute Applied Physics Press, Nizhny Novgorod.

Petrukhin, N. S., Pelinovsky, E. N., and Batsyna, E. K. 2011. Reflectionless propagation of acoustic waves through the Earth’s Atmosphere. JETP Letters, 93, 564–567.
http://dx.doi.org/10.1134/S0021364011100110

Petrukhin, N. S., Pelinovsky, E. N., and Batsyna, E. K. 2012. Reflectionless propagation of acoustic waves in the solar atmosphere. Astron. Lett., 38, 388–393.
http://dx.doi.org/10.1134/S1063773712050064

Rytov, S. M., Kravtsov, Yu. A., and Tatarskii, V. I. 1989. Principles of Statistical Radiophysics. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-72685-9

Slunyaev, A., Didenkulova, I., and Pelinovsky, E. 2011. Rogue waters. Contemp. Phys., 52, 571–590.
http://dx.doi.org/10.1080/00107514.2011.613256

Thornton, E. B. 1977. Rederivation of the saturation range in the frequency spectrum of wind-generated gravity waves. J. Phys. Oceanogr., 7, 137–140.
http://dx.doi.org/10.1175/1520-0485(1977)007<0137:ROTSRI>2.0.CO;2

Tinti, S., Bortolucci, E., and Chiavettieri, C. 2001. Tsunami excitation by submarine slides in shallow-water approximation. Pure Appl. Geophys., 158, 759–797.
http://dx.doi.org/10.1007/PL00001203

Back to Issue