The main objective of our study was to reconstruct the multi-decadal changes of the underwater light field in two large, shallow and polymictic Estonian lakes Võrtsjärv and Peipsi in order (i) to assess the potential role that light limitation may have had on phytoplankton growth in the past and (ii) to get an insight into the factors driving underwater light climate in shallow turbid lakes in the long term. We reconstructed the long-term variations of the diffuse attenuation coefficient of water (Kd,PAR) in the photosynthetically active region (PAR, 400–700 nm) partly on the basis of measured beam attenuation spectra and partly using regression analysis. From Kd,PAR we calculated the depth of the euphotic zone (z1%) and the mean light availability in the mixed layer (Emix). The reconstructed time series of these bio-optical parameters gave a plausible picture of the long-term development of light conditions in the two lakes studied, which was in accordance with their eutrophication history and changes in their water levels. Better light availability in both lakes generally coincided with years of a low water level, and the coincidence was more distinct in the shallower Võrtsjärv. Values of Emix revealed a probable light limitation in Peipsi in autumn and in Võrtsjärv throughout the year.
Arst, H. 2003. Optical Properties and Remote Sensing of Multicomponental Water Bodies. Springer, Praxis Publishing, Chichester.
Arst, H., Reinart, A., Erm, A., and Hussainov, M. 2000. Influence of the depth-dependence of the PAR diffuse attenuation coefficient on the computation of downward irradiance in different water bodies. Geophysica, 36(1–2), 129–139.
Arst, H., Erm, A., Reinart, A., Sipelgas, L., and Herlevi, A. 2002. Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient, II: application of the improved model to different types of lakes. Nord. Hydrol., 33, 207–226.
Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A., and Virta, J. 2008. Optical properties of boreal lake waters in Finland and Estonia. Boreal Envir. Res., 13(2), 133–158.
Dera, J. 1992. Marine Physics. Elsevier, Amsterdam.
Edler, L. (ed.). 1979. Recommendations for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. The Baltic Marine Biologists. Publ. No. 5.
Geddes, M. C. 1984. The role of turbidity in the limnology of Lake Alexandrina, River Murray, South Australia; comparisons between clear and turbid phases. Aust. J. Mar. Fresh. Res., 39, 201–209.
http://dx.doi.org/10.1071/MF9880201
Heinsalu, A. and Alliksaar, T. 2009. Palaeolimnological assessment of the reference conditions and ecological status of lakes in Estonia – implications for the European Union Water Framework Directive. Estonian J. Earth Sci., 58, 334–341.
http://dx.doi.org/10.3176/earth.2009.4.11
Heinsalu, A., Alliksaar, T., Leeben, A., and Nõges, T. 2007. Sediment diatom assemblages and composition of pore-water dissolved organic matter as indicators of recent eutrophication history of Lake Peipsi. Hydrobiologia, 584(1), 133–143.
http://dx.doi.org/10.1007/978-1-4020-6399-2_13
Herlevi, A., Virta, H., Arst, H., and Erm, A. 1999. Results of light absorption/attenuation measurements in Finnish and Estonian lakes in summer 1997. Proc. Estonian Acad. Sci. Ecol., 48, 46–62.
Jaani, A. 1990. Võrtsjärve veerežiim ja -bilanss [The water regime and water balance of Lake Võrtsjärv]. Eesti Loodus, 11, 743–747 (in Estonian with English summary).
Jerlov, N. G. 1976. Marine Optics. Elsevier, Amsterdam.
Kirk, J. T. O. 1984. Dependence of relationship between apparent and inherent optical properties of water on solar altitude. Limnol. Oceanogr., 29, 350–356.
http://dx.doi.org/10.4319/lo.1984.29.2.0350
Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511623370
Nõges, P., Kangur, A., Järvalt, A., and Nõges, T. 2001. History of hydrological and biological investigations of Lake Võrtsjärv. Proc. Estonian Acad. Sci. Biol. Ecol., 50, 180–193.
Nõges, P., Nõges, T., and Laas, A. 2010a. Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv, Estonia. J. Aquat. Ecosys. Health Manage., 13(2), 154–163.
http://dx.doi.org/10.1080/14634981003788953
Nõges, P., Mischke, U., Laugaste, R., and Solimini, A. G. 2010b. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia, 646(1), 33–48.
http://dx.doi.org/10.1007/s10750-010-0178-y
Nõges, T. and Solovjova, I. 2000. The influence of different solvents and extraction regimes on the recovery of chlorophyll a from freshwater phytoplankton. Geophysica, 36, 161–168.
Nõges, T., Nõges, P., and Laugaste, R. 2003. Water level as the mediator between climate change and phytoplankton composition in a large temperate lake. Hydrobiologia, 506(1–3), 257–263.
http://dx.doi.org/10.1023/B:HYDR.0000008540.06592.48
Oliver, R. L. 1981. Factors Controlling Phytoplankton Seasonal Succession in Mt. Bold Reservoir, South Australia. PhD dissertation, University of Adelaide.
Ott, I. and Kõiv, T. 1999. Estonian Small Lakes: Special Features and Changes. Keskkonnaministeeriumi Info- ja Tehnokeskus, Tallinn.
Paavel, B., Arst, H., Reinart, A., and Herlevi, A. 2006. Model calculations of diffuse attenuation coefficient spectra in lake waters. Proc. Estonian Acad. Sci. Ecol., 55, 61–81.
Paavel, B., Arst, H., and Reinart, A. 2008. Variability of bio-optical parameters in two North-European large lakes. Hydrobiologia, 599(1), 201–211.
http://dx.doi.org/10.1007/s10750-007-9200-4
Phlips, E. J., Aldridge, F. J., Schelske, C. L., and Crisman, T. L. 1995. Relationships between light availability, chlorophyll a, and tripton in a large, shallow subtropical lake. Limnol. Oceanogr., 40, 416–421.
http://dx.doi.org/10.4319/lo.1995.40.2.0416
Reinart, A. and Nõges, P. 2004. Light conditions in Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 141–149. Estonian Encyclopaedia Publishers, Tallinn.
Reinart, A. and Pedusaar, T. 2008. Reconstruction of the time series of the underwater light climate in a shallow turbid lake. Aquat. Ecol., 42(1), 5–15.
http://dx.doi.org/10.1007/s10452-006-9056-0
Reinart, A., Arst, H., Blanco-Sequeiros, A., and Herlevi, A. 1998. Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. J. Geophys. Res., 103, 7748–7752.
http://dx.doi.org/10.1029/97JC03645
Reinart, A., Paavel, B., Pierson, D., and Strömbeck, N. 2004. Inherent and apparent optical properties of Lake Peipsi, Estonia. Boreal Envir. Res., 9, 429–445.
Scheffer, M. 1998. Ecology of Shallow Lakes. Chapman and Hall, London.
StatSoft Inc. 2007. STATISTICA. Data Analysis Software System. Version 8.0. www.statsoft.com (accessed 02.05.2012).
Toming, K., Arst, H., Paavel, B., Laas, A., and Nõges, T. 2009. Spatial and temporal variations in coloured dissolved organic matter in large and shallow Estonian water bodies. Boreal Envir. Res., 14, 959–970.
Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9, 1–39.
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. 3rd edn. Academic Press, London.
Zhang, Y., Zhang, B., Ma, R., Feng, S., and Le, C. 2007. Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundamental and Appl. Limnol. Arch. Hydrobiol., 170(1), 11–19.http://dx.doi.org/10.1127/1863-9135/2007/0170-0011