ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Numerical study of upward particulate pipe flows at a constant Reynolds number; pp. 97–108
PDF | doi: 10.3176/proc.2013.2.03

Authors
Alexander Kartushinsky, Ylo Rudi, Sergei Tisler, Igor Shcheglov, Alexander Shablinsky
Abstract

The method based on 2D Reynolds-averaged Navier–Stokes equations has been employed for the simulation of upward turbulent particulate cylindrical pipe flows of different diameters for a constant flow Reynolds number. This approach was supplied with appropriate closure equations which took into account all pertinent forces and effects that exerted influence on gas and particles: the particle–particle, particle–wall, and particle–turbulence interactions; gravitation, viscous drag, and lift forces; and turbulence modulation. The finite volume technique was applied to the numerical solution of the governing equations. The results show the effect of the mass loading on the radial distributions of the longitudinal velocity lag, the turbulence modulation, and particle concentration. In particular, the two-way coupling of turbulence with the given particles raises simultaneously the velocity lag between gas and particles, originating from direct impact of turbulence on particle motion, and turbulence attenuation by the particles. The radial distributions of longitudinal particle velocity and mass concentration become flatter for higher flow mass loading.

References

Cabrejos, F. J. and Klinzing, G. E. 1994. Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport. Powder Technol., 79, 173–186.
http://dx.doi.org/10.1016/0032-5910(94)02815-X

Cao, J. and Ahmadi, G. 1995. Gas-particle two-phase turbulent flow in vertical duct. Int. J. Multiphase Flow, 21, 1203–1228.
http://dx.doi.org/10.1016/0301-9322(95)00042-V

Crowe, C. T. 2000. On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow, 26, 719–727.
http://dx.doi.org/10.1016/S0301-9322(99)00050-6

Crowe, C. T. and Gillandt, I. 1998. Turbulence modulation of fluid-particle flows – a basic approach. In Proceedings of the 3rd International Conference on Multiphase Flow, Lyon, France, June 8–12, 1998. CD-ROM.

Crowe, C. T., Sommerfeld, M., and Tsuji, Y. 1998. Multiphase Flows with Droplets and Particles. CRC Press LLC, Boca Raton, Florida.

Davies, J. T. 1987. Calculation of critical velocities to maintain solids in suspension in horizontal pipes. Chem. Eng. Sci., 42, 1667–1670.
http://dx.doi.org/10.1016/0009-2509(87)80171-9

Deutsch, E. and Simonin, O. 1991. Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence. In Proceedings of the 1st ASME/JSME Fluids Engineering Conference, Portland, USA, June 23–27, 1991 (Michaelides, E. E., Fukano, T., and Serizawa, A., eds), pp. 35–42. American Society of Mechanical Engineers, New York, Series FED, 110.

Elghobashi, S. E. and Abou-Arab, T. W. 1983. A two-equation turbulence model for two-phase flows. Phys. Fluids, 26, 931–938.
http://dx.doi.org/10.1063/1.864243

Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academy Press, Boston.

Gore, R. A. and Crowe, C. T. 1989. Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow, 15, 279–285.
http://dx.doi.org/10.1016/0301-9322(89)90076-1

Kartushinsky, A. and Michaelides, E. E. 2004. An analytical approach for the closure equations of gas-solid flows with inter-particle collisions. Int. J. Multiphase Flow, 30, 159–180.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2003.10.007

Kartushinsky, A. and Michaelides, E. E. 2006. Particle-laden gas flow in horizontal channels with collision effects. Powder Technol., 168, 89–103.
http://dx.doi.org/10.1016/j.powtec.2006.06.008

Kartushinsky, A. I., Michaelides, E. E., and Zaichik, L. I. 2009a. Comparison of the RANS and PDF methods for air-particle flows. Int. J. Multiphase Flow, 35, 914–923.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.002

Kartushinsky, A. I., Michaelides, E. E., Hussainov, M. T., and Rudi, Y. 2009b. Effects of the variation of mass loading and particle density in gas-solid particle flow in pipes. Powder Technol., 193, 176–181.
http://dx.doi.org/10.1016/j.powtec.2009.03.013

Kartushinsky, A. I., Michaelides, E. E., Rudi, Y. A., Tisler, S. V., and Shcheglov, I. N. 2011. Numerical simulation of three-dimensional gas-solid particle flow in a horizontal pipe. A.I.Ch.E. J., 57, 2977–2988.
http://dx.doi.org/10.1002/aic.12528

Marchioli, C., Giusti, A., Salvetti, M.-V., and Soldati, A. 2003. Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiphase Flow, 29, 1017–1038.
http://dx.doi.org/10.1016/S0301-9322(03)00036-3

Mei, R. 1992. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiphase Flow, 18, 145–147.
http://dx.doi.org/10.1016/0301-9322(92)90012-6

Michaelides, E. E. 1983. A model for the flow of solid particles in gases. Int. J. Multiphase Flow, 10, 61–77.
http://dx.doi.org/10.1016/0301-9322(83)90060-5

Michaelides, E. E. 2006. Particles, Bubbles and Drops – Their Motion, Heat and Mass Transfer. World Scientific Publishers, New Jersey.
http://dx.doi.org/10.1142/9789812774316

Perić, M. and Scheuerer, G. 1989. CAST – A Finite Volume Method for Predicting Two-Dimensional Flow and Heat Transfer Phenomena. GRS – Technische Notiz SRR–89–01.

Pfeffer, R., Rosetti, S., and Licklein, S. 1966. Analysis and Correlation of Heat Transfer Coefficient and Heat Transfer Data for Dilute Gas–Solid Suspensions. NASA Rep. TND–3603.

Pope, S. B. 2008. Turbulent Flows. Cambridge University Press, Cambridge – New York.

Reeks, M. W. 1992. On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A, 4, 1290–1303.
http://dx.doi.org/10.1063/1.858247

Rizk, M. A. and Elghobashi, S. E. 1989. A two-equation turbulence model for dispersed dilute confined two-phase flows. Int. J. Multiphase Flow, 15, 119–133.
http://dx.doi.org/10.1016/0301-9322(89)90089-X

Schiller, L. and Naumann, A. 1933. Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Vereines Deutscher Ingenieure, 77, 318–320.

Simonin, O. 1991. Eulerian formulation for particle dispersion in turbulent two-phase flows. In Proceedings of the 5th Workshop on Two-Phase Flow Predictions, Erlangen, Germany, March 19–22, 1990 (Sommerfeld, M. and Wennerberg, D., eds), pp. 156–166. Forschungszentrum Jülich, Jülich.

Sommerfeld, M. 2003. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel. Part I: Particle transport. Int. J. Multiphase Flow, 29, 675–699.
http://dx.doi.org/10.1016/S0301-9322(03)00033-8

Squires, K. D. and Eaton, J. K. 1990. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A, 2, 1191–1203.
http://dx.doi.org/10.1063/1.857620

Tsuji, Y. and Morikawa, Y. 1982. LDV measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mech., 120, 385–409.
http://dx.doi.org/10.1017/S002211208200281X

Tsuji, Y., Morikawa, Y., and Shiomi, H. 1984. LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech., 139, 417–434.
http://dx.doi.org/10.1017/S0022112084000422

Yarin, L. P. and Hetsroni, G. 1994. Turbulence intensity in dilute two-phase flows. Parts I, II and III. Int. J. Multiphase Flow, 20, 1–44.
http://dx.doi.org/10.1016/0301-9322(94)90002-7

Yuan, Z. and Michaelides, E. E. 1992. Turbulence modulation in particulate flows – a theoretical approach. Int. J. Multiphase Flow, 18, 779–785.
http://dx.doi.org/10.1016/0301-9322(92)90045-I

Zaichik, L. I. and Alipchenkov, V. M. 2005. Statistical models for predicting particle dispersion and preferential concentration in turbulent flows. Int. J. Heat Fluid Fl., 26, 416–430.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.10.001

Back to Issue