The use of local sheep wool in Estonia – and consequently, sheep farming – has declined since the mid-20th century due to the increased availability of synthetic fibres and the import of finer, higher-quality wool. Nevertheless, it is possible to produce high-quality textiles from the more uneven local wool, indicating the need to revalue Estonian local wool and the textiles produced from it. There is limited research on Estonian local sheep wool (Estonian Darkhead, Estonian Whitehead, Kihnu Native sheep) fibre properties and no data on the combined effect of these fibre properties on textile material properties in various stages of textile production, such as yarn, knitted material, and knitted felted material. Therefore, specific fibre properties – including fibre length, linear density, diameter, cuticle scale height, and scale frequency – were analysed, and their combined effects on yarn, knitted material, and knitted felted material properties were evaluated. For comparison, wool from locally raised Mérinos d’Arles sheep was also analysed. The results showed that the fibres from the wool of Estonian breeds were more uneven, coarser, and longer, with higher linear density and lower cuticle scale frequency. However, yarns produced from these fibres demonstrated greater tensile properties. Material properties were influenced both by fibre and yarn properties.
1. Kabun, K. Archaically High-Tech: Knowledge-Based Use of Sheep Wool. The Estonian Academy of Arts Department of Textile Design, Tallinn, 2022.
2. Finch, K. Lecture 2: Wool. 1977.
3. Eesti Lambakasvatajate Selts, Villa töörühm (Estonian Sheep Breeders Association, Wool Working Group). Villa ja villatööstuse arengukava 2016‒2036(Development plan for wool and the wool industry 2016‒2036). 2015.
4. Matsin, A., Tali, K., Kabun, K. and Kool, L. Ülevaade Eesti villamajandusest 2022 (Estonian wool industry: the current state). Studia Vernacula, 2022, 14, 206–223.
5. Dillon, P. Sheep, woolcraft and regenerative land-use. Presented at the International Wool Conference, Viljandi, Estonia, 17‒18 November 2022.
6. Zarens, K. The wool quality of Estonian sheep and phenotypical correlation between wool characteristics. Master’s thesis. Estonian Agricultural University, Tartu, 1997.
7. Västrik, V. and Kool, L. Villa sorteerimise ja töötlemise mõju lõnga ja kangaste omadustele Muhu saarel kasvanud maalammaste näitel (Effect of the sorting and processing of wool on the properties of yarn and fabric, on the example of the Estonian Native Sheep grown on Muhu Island). Studia Vernacula, 2019, 10, 122–145.
https://doi.org/10.12697/sv.2019.10.122-145
8. Matsin, A., Beilmann, M., Blomli, M. E., Kaljus, A., Lehis, L., Espelien, I. S. et al. From wool to fabric. Estonian and Norwegian sheep’s wool as a textile material. Production, properties and possibilities of use on the example of the wool of six sheep breeds.
https://sisu.ut.ee/wp-content/uploads/sites/591/wool_to_fabric_a4_12.pdf (accessed 2023-09-22).
9. Nool, S. Villa töötlemise võimalused Eesti villavabrikutes. Eesti päritolu lambavillast lõnga testimine ja kasutamine silmuskoelise toote loomisel (Possibilities of processing local wool in Estonian wool factories. Testing and using Estonian woollen yarn for creating a knitted product). Bachelor’s thesis. Pallas University of Applied Sciences, Tartu, 2019.
10. Ärmpalu-Idvand, A. Kihnu maalammas on elus ja hea tervise juures (The Kihnu native sheep is alive and well). Eesti Loodus, 10, 2009.
11. Saarma, U. Eesti ja Euroopa põlislammaste lugu kahe teadusuuringu valguses (The story of Estonian and European native sheep in the light of two scientific studies). Eesti Loodus, 10, 2009.
12. Nõmmera, E. and Jaama, K. Lambavill: villa omadused, sordid ja -kaubandus (Sheep Wool: Properties, Varieties, and Wool Trade). Agronoom, Tallinn, 1943.
13. Eesti vill ja eesti lambad (Estonian wool and Estonian sheep). Eesti Sõna, 188, 1943.
14. Kihnu Native Sheep Breeders Society. Kihnu maalamba aretus-säilitusprogramm. Tõuraamatupidamine. Jõudluskontrolli läbiviimise ja geneetilise hindamise kord (Breeding and conservation programme for the Kihnu native sheep. Studbook management. Procedures for performance testing and genetic evaluation). 2020.
15. Rannamäe, E. Kolm tuhat aastat lambaid Eestis: zooarheoloogiline leiuaines ja emaliinide geneetiline mitmekesisus (Three thousand years of sheep in Estonia: zooarchaeological evidence and the genetic diversity of maternal lineages). Õpetatud Eesti Seltsi aastaraamat 2016 (Yearbook of the Learned Estonian Society 2016). 2017.
16. Hõim, H. and Jaama, K. Eriloomakasvatus (Special Animal Husbandry). Valgus, Tallinn, 1988.
17. Ahlskog, K. Evaluation and quality of wool. Presented at the International Wool Conference, Viljandi, Estonia, 17‒18 November 2022.
18. Hatch, K. L. Textile Science. West Publishing Company, Minneapolis, 1993.
19. American Wool. Wool grades and the sheep that grow the wool.
https://www.scribd.com/document/793715035/Wool-Grades-and-the-Sheep-that-Grow-the-Wool-Scan-1 (accessed 2024-01-23).
20. Holman, B. W. B. and Malau-Aduli, A. E. O. A review of sheep wool quality traits. Annual Research & Review in Biology, 2012, 2(1), 1–14.
https://journalarrb.com/index.php/ARRB/article/view/1260
21. Barach, J. L. and Rainard, L. W. Effect of crimp on fiber behavior: part II: addition of crimp to wool fibers and its effect on fiber properties. Textile Research Journal, 1950, 20(5), 308–316.
https://doi.org/10.1177/004051755002000506
22. Veldsman, D. P. and Kritzinger, C. C. 93 ‒ studies on the felting properties of South African Merino wools. Journal of the Textile Institute Transactions, 1960, 51(12), T1257–T1270.
https://doi.org/10.1080/19447026008662561
23. Fraser, R. D. B. and Pressley, T. A. Felting investigations: part I: potential substitutes for rabbit fur in hat felts. Textile Research Journal, 1958, 28(6), 478–485.
https://doi.org/10.1177/004051755802800607
24. Crewther, W. G. and Dowling, L. M. Felting investigations: part II: relationship between wool fiber crimp and rate of felting. Textile Research Journal, 1961, 31(1), 14–18.
https://doi.org/10.1177/004051756103100102
25. Boncamper, I. Tekstiilkiud: käsiraamat (Textile Fibres: A Handbook). Eesti Rõiva- ja Tekstiililiit, Tallinn, 2000.
26. Unal, P. G. and Atav, R. Determination of the relationship between fiber characteristics and felting tendency of luxury fibers from various origins. Textile Research Journal, 2018, 88(6), 636–643.
https://doi.org/10.1177/0040517516685282
27. Raja, A. S. M., Shakyawar, D. B., Kumar, A., Pareek, P. K. and Temani, P. Feltability of coarse wool and its application as technical felt. Indian Journal of Fibre & Textile Research, 2013, 38, 395–399.
28. Yu, H., Hurren, C., Liu, X. and Wang, X. Understanding the difference in softness of Australian Soft Rolling Skin wool and conventional Merino wool. Textile Research Journal, 2022, 92(17‒18), 3130–3141.
https://doi.org/10.1177/00405175211050524
29. Paul, S., Hewitt, A., Rana, S. and Goswami, P. Development of novel parameters for characterising scale morphology of wool fibre and its correlation with dye diffusion coefficient of acid dye. Scientific Reports, 2023, 13(1), 18444.
https://doi.org/10.1038/s41598-023-45689-w
30. Cottle, D. and Wood, E. Overview of early stage wool processing.
https://www.scribd.com/document/490658701/WOOL-482-582-12-T-01 (accessed 2024-02-16).
31. Bouagga, T., Harizi, T., Sakli, F. and Zoccola, M. Correlation between the mechanical behavior and chemical, physical and thermal characteristics of wool: a study on Tunisian wool. Journal of Natural Fibres, 2020, 17(1) 28–40.
https://doi.org/10.1080/15440478.2018.1461727
32. Clark, M. (ed.) Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. Woodhead Publishing, Cambridge, 2011.
33. Hayavadana, J. (ed.) Woven Fabric Structure Design and Product Planning. Woodhead Publishing, New Delhi, 2015.
https://doi.org/10.1201/b18876
34. Ukponmwan, J. O., Mukhopadhyay, A. and Chatterjee, K. N. Pilling. The Textile Institute, Manchester, 1998.
https://doi.org/10.1080/00405169808688874
35. Matsin, A. Estonian and Norwegian local sheep wool ‒ research and study materials for textile students in higher education. Presented at the International Wool Conference, Viljandi, Estonia, 17‒18 November 2022.
36. Simpson, W. S. and Crawshaw, G. H. (eds) Wool: Science and Technology. The Textile Institute, Boca Raton, 2002.
37. Kenyon, P. R. The assessment of natural variation in felting and shrinkage in wool from two flocks. Master’s thesis. Massey University, Palmerston North, 1997.
38. Van der Vegt, A. K. A study on the mechanism of wool felting. PhD thesis. Delft University of Technology, Delft, 1955.
39. Liu, X. and Wang, X. A comparative study on the felting propensity of animal fibers. Textile Research Journal, 2007, 77(12), 957–963.
https://doi.org/10.1177/0040517507083517
40. Bogaty, H., Weiner, L. I., Sookne, A. M. and Harrist, M. Effect of construction on the laundering shrinkage of knitted woolens. Textile Research Journal, 1951, 21(2), 102‒109.
https://doi.org/10.1177/004051755102100207
41. Johnson, A. Influence of fiber length on the milling shrinkage of wool cloths. Textile Research Journal, 1953, 23(12), 937.
https://doi.org/10.1177/004051755302301211
42. Boutrop, J. Fulling/felting resists. https://share.google/WunpJBqJAc0qdIblE (accessed 2024-02-08).
43. Speakman, J. B., Stott, E. and Chang, H. 27 ‒ a contribution to the theory of milling ‒ part 2. Journal of the Textile Institute Transactions, 1933, 24(7), T273–T292.
https://doi.org/10.1080/19447023308661595
44. Feldtman, H. D. and McPhee, J. R. The effect of temperature on the felting of shrink-resistant wool. Textile Research Journal, 1964, 34(3), 199‒206.
https://doi.org/10.1177/004051756403400303
45. ASTM D5103-07(2018). Standard test method for length and length distribution of manufactured staple fibers (single-fiber test).
46. EVS-EN ISO 1973:2021. Textile fibres – Determination of linear density – Gravimetric method and vibroscope method.
47. EVS-EN ISO 2060:2000. Textiles – Yarn from packages – Determination of linear density (mass per unit length) by the skein method.
48. EVS-EN ISO 2061:2015. Textiles – Determination of twist in yarns – Direct counting method.
49. Viikna, A. Kiuteadus (Fibre Science). Tallinna Tehnikaülikooli Kirjastus, Tallinn, 2005.
50. CSN 80 0704:1973. Determination of yarn appearance.
51. EVS-EN 12127:2000. Textiles – Fabrics – Determination of mass per unit area using small samples.
52. EVS-EN ISO 9237:2000. Textiles – Determination of permeability of fabrics to air.
53. EVS-EN ISO 5084:2000. Textiles – Determination of thickness of textiles and textile products.
54. EVS-EN ISO 12945-2:2020. Textiles – Determination of fabric propensity to surface pilling, fuzzing or matting – Part 2: Modified Martindale method.
55. EVS-EN ISO 12945-4:2020. Textiles – Determination of fabric propensity to surface pilling, fuzzing or matting – Part 4: Assessment of pilling, fuzzing or matting by visual analysis.
56. EVS-EN ISO 12947-2:2016. Textiles – Determination of the abrasion resistance of fabrics by the Martindale method – Part 2: Determination of specimen breakdown.
57. Ovam. Ecodesign criteria for consumer textiles. 2021.
https://circulareconomy.europa.eu/platform/sites/default/files/ecodesign_criteria_for_consumer_textiles.pdf (accessed 2023-10-02).