ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2024): 0.7
Research article
Transforming state equations into the generalized observer form: comparison of algebraic and differential geometric approaches; pp. 473–486
PDF | https://doi.org/10.3176/proc.2025.4.01

Authors
Ülle Kotta ORCID Icon, Tanel Mullari, Maris Tõnso ORCID Icon
Abstract

Two different approaches exist that allow transforming nonlinear discrete-time state equations into the generalized observer form. One of them is based on the algebraic approach of vector fields and the other on the standard differential geometric approach. This paper presents a comprehensive comparison of these two solutions, covering assumptions, two sets of solvability conditions, parametrized state transformation algorithms and domains of validity of the results.

References

1. Califano, C., Monaco, S. and Normand-Cyrot, D. Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete time. Automatica, 2009, 45(11), 2483–2490. 
https://doi.org/10.1016/j.automatica.2009.07.003

2. Califano, C., Monaco, S. and Normand-Cyrot, D. On the observer design in discrete-time. Syst. Control Lett., 2003, 49(4), 255–265. 
https://doi.org/10.1016/s0167-6911(02)00344-4

3. Lee, H.-G. and Hong, J.-M. Algebraic conditions for state equivalence to a discrete-time nonlinear observer canonical form. Syst. Control Lett., 2011, 60(9), 756–762. 
https://doi.org/10.1016/j.sysconle.2011.06.001

4. Lee, W. and Nam, K. Observer design for autonomous discrete-time nonlinear systems. Syst. Control Lett., 1991, 17(1), 49–58. 
https://doi.org/10.1016/0167-6911(91)90098-y

5. Mullari, T. and Kotta, Ü. Transformation of nonlinear discrete-time state equations into the observer form: extension to non-reversible case. Proc. Estonian Acad. Sci., 2021, 70(3), 235–247. 
https://doi.org/10.3176/proc.2021.3.03

6. Mullari, T., Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E. and Moog, C. H. Forward and backward shifts of vector fields: towards the dual algebraic framework. IEEE Trans. Autom. Control, 2017, 62(6), 3029–3033. 
https://doi.org/10.1109/tac.2016.2608718

7. Mullari, T., Kotta, Ü., Kaldmäe, A., Kaparin, V. and Simha, A. Extended observer form with vector fields. Int. J. Control, 2024, 97(10), 2399–2412. 
https://doi.org/10.1080/00207179.2023.2274060

8. Nam, K. Linearization of discrete-time nonlinear systems and a canonical structure. IEEE Trans. Autom. Control, 1989, 34(1), 119–122. 
https://doi.org/10.1109/9.8665

9. Simha, A., Kaparin, V., Mullari, T. and Kotta, Ü. Extended observer forms for submersive discrete-time systems. IEEE Trans. Autom. Control, 2024, 69(4), 2684–2688. 
https://doi.org/10.1109/tac.2023.3336253

Back to Issue