ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Environmental performance analysis of innovative mechanical separation for recycling of waste printed circuit boards; pp. 291–301
PDF | https://doi.org/10.3176/proc.2025.2S.03

Authors
Pooya Hosseini, Artur Klauson, Dmitri Goljandin, Brent Hendrickx, Joost R. Duflou
Abstract

The accumulation of electronic waste (e-waste) poses growing environmental challenges, amplified by the release of toxic brominated compounds in traditional recycling approaches. Printed circuit boards (PCBs), a key component of e-waste, provide an opportunity for resource recovery through advanced mechanical separations. This study evaluates the environmental performance of a developed mechanical separation process for PCBs using the Environmental Footprint 3.1, IPCC Global Warming Potential, and Cumulative Energy Demand methods. The analyzed process attempts to recover enriched outputs, including a copper concentrate and an epoxy and ceramics concentrate, aiming at delivering an efficient metals recovery, producing phenolic derivatives, and reducing bromine emissions in downstream materials recovery. Results reveal that 7–12% of the initial waste PCBs is liberated as an epoxy-rich concentrate, which, alongside the copper fraction, demonstrates potential for impact mitigation across the recycling chain. However, the process requires a cumulative energy demand of 1658.7 MJ and emits 99.9 kg CO2-eq per ton of PCBs. Size reduction was identified as the most energy-intensive step, due to the high energy demand of millimeter-scale material reduction needed for the inertial and electrostatic separations. Sensitivity analysis highlighted the influence of regional energy profiles, with a lower dependence on fossil-based electricity significantly reducing impacts. The study also noted the disproportionate impact of recovered materials, with the copper concentrate showing a high price-weighted CO2-eq of 0.28 kg and 4.6 MJ energy demand per kg of liberated copper concentrate. The environmental impact per unit of economic gain for the copper concentrate evolves over the process to an order of magnitude higher than that of the initial input, with transportation dominating the impact. These findings emphasize the potential of advanced mechanical separation to address e-waste concerns, while identifying areas for improvement toward a more sustainable recycling framework.

References

1. United Nations Institute for Training and Research. The Global E-waste Monitor 2024. 
https://ewastemonitor.info/the-global-e-waste-monitor-2024 (accessed 2024-12-15).

2. Rocchetti, L., Amato, A. and Beolchini, F. Printed circuit board recycling: a patent review. J. Clean. Prod., 2018, 178, 814–832. 
https://doi.org/10.1016/j.jclepro.2018.01.076  

3. Ghosh, B., Ghosh, M. K., Parhi, P., Mukherjee, P. S. and Mishra, B. K. Waste printed circuit boards recycling: an exten­sive assessment of current status. J. Clean. Prod., 2015, 94, 5–19. 
https://doi.org/10.1016/j.jclepro.2015.02.024  

4. Vats, M. C. and Singh, S. K. E-waste characteristic and its disposal. Int. J. Ecol. Sci. Environ. Eng., 2014, 1(2), 49–61.

5. Oguchi, M. Sakanakura, H. and Terazono, A. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes. Science of The Total Environment, 2013, 463–464, 1124–1132. 
https://doi.org/10.1016/j.scitotenv.2012.07.078  

6. Murugesan, M. P., Myneni, V. R., Gudeta, B. and Komarabathina, S. Toxic metal recovery from waste printed circuit boards: a review of advanced approaches for sustainable treatment methodology. Adv. Mater. Sci. Eng., 2022, 6550089. 
https://doi.org/10.1155/2022/6550089  

7. Kim, Y. R., Harden, F. A., Toms, L.-M. L. and Norman, R. E. Health consequences of exposure to brominated flame retardants: a systematic review. Chemosphere, 2014, 106, 1–19. 
https://doi.org/10.1016/j.chemosphere.2013.12.064  

8. Quan, C., Li, A., Gao, N. and Dan, Z. Characterization of products recycling from PCB waste pyrolysis. J. Anal. Appl. Pyrolysis, 2010, 89(1), 102–106. 
https://doi.org/10.1016/j.jaap.2010.06.002  

9. Zhu, Y., Li, B., Wei, Y., Zhou, S. and Wang, H. Recycling potential of waste printed circuit boards using pyrolysis: status quo and perspectives. Process Saf. Environ. Prot., 2023, 173, 437–451. 
https://doi.org/10.1016/j.psep.2023.03.018  

10. Blazsó, M., Czégény, Z. and Csoma, C. Pyrolysis and debro­mination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. J. Anal. Appl. Pyrolysis, 2002, 64(2), 249–261. 
https://doi.org/10.1016/S0165-2370(02)00035-9  

11. Yao, Z., Reinmöller, M., Ortuño, N., Zhou, H., Jin, M., Liu, J. et al. Thermochemical conversion of waste printed circuit boards: thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies. Prog. Energy Combust. Sci., 2023, 97, 101086. 
https://doi.org/10.1016/j.pecs.2023.101086  

12. Ma, C., Kumagai, S., Saito, Y., Kameda, T. and Yoshioka, T. An integrated utilization strategy of printed circuit boards and waste tire by fast co-pyrolysis: value-added products recovery and heteroatoms transformation. J. Hazard. Mater., 2022, 430, 128420. 
https://doi.org/10.1016/j.jhazmat.2022.128420  

13. Shen, Y., Chen, X., Ge, X. and Chen, M. Chemical pyrolysis of e-waste plastics: char characterization. J. Environ. Manag., 2018, 214, 94–103. 
https://doi.org/10.1016/j.jenvman.2018.02.096  

14. Wan, J., Sun, J., Zhao, X.-L., Le, A.-S., Ren, P.-B., Zhan, M.-X. et al. Emission of brominated pollutants from waste printed circuit boards during thermal treatment: a review. Aerosol Air Qual. Res., 2023, 23(12), 230135. 
https://doi.org/10.4209/aaqr.230135  

15. Rieger, T., Oey, J. C., Palchyk, V., Hofmann, A., Franke, M. and Hornung, A. Chemical recycling of WEEE plastics – production of high purity monocyclic aromatic chemicals. Processes, 2021, 9(3), 530. 
https://doi.org/10.3390/pr9030530  

16. Dutta, D., Rautela, R., Gujjala, L. K. S., Kundu, D., Sharma, P., Tembhare, M. et al. A review on recovery processes of metals from e-waste: a green perspective. Sci. Total Environ., 2023, 859(2), 160391. 
https://doi.org/10.1016/j.scitotenv.2022.160391  

17. Hino, T., Agawa, R., Moriya, Y., Nishida, M., Tsugita, Y. and Araki, T. Techniques to separate metal from waste printed circuit boards from discarded personal computers. J. Mater. Cycles Waste Manag., 2009, 11(1), 42–54. 
http://dx.doi.org/10.1007/s10163-008-0218-0  

18. Veit, H. M. and Bernardes, A. M. (eds). Electronic Waste: Recycling Techniques. Springer, Cham, 2015. https://doi.org/10. 1007/978-3-319-15714-6 

19. Zhang, S. and Forssberg, E. Mechanical separation-oriented characterization of electronic scrap. Resour. Conserv. Recycl., 1997, 21(4), 247–269. 
https://doi.org/10.1016/S0921-3449(97)00039-6  

20. Nie, C.-C., Shi, S.-X., Lyu, X.-J., Wu, P., Wang, J.-X. and Zhu, X.-N. Settlement behavior and stratification of waste printed circuit boards particles in gravitational field. Resour. Conserv. Recycl., 2021, 170, 105615. 
https://doi.org/10.1016/j.resconrec.2021.105615  

21. Lin, P., Werner, J., Groppo, J. and Yang, X. Material characterization and physical processing of a general type of waste printed circuit boards. Sustainability, 2022, 14(20), 13479. 
https://doi.org/10.3390/su142013479  

22. Menad, N. E. Physical separation processes in waste electrical and electronic equipment recycling. In WEEE Recycling: Research, Development, and Policies (Chagnes, A., Cote, G., Ekberg, C., Nilsson, M. and Retegan, T., eds). Elsevier, 2016, 53–74. 
https://doi.org/10.1016/B978-0-12-803363-0.00003-1

23. Hosseini, P., Klauson, A., Hendrickx, B., Goljandin, D. and Duflou, J. R. Sustainable e-waste recycling: environmental impact assessment of novel waste PCBs separation. In 2024 19th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2–4 October 2024. IEEE, 2024, 1–7. 
https://doi.org/10.1109/BEC61458.2024.10737968  

24. Cable Management. Scrap Metal Recycling & Equipment
https://cablemanagementusa.com/ (accessed 2024-05-26).

25. ESG Edelmetall-Service GmbH & Co. KG. 
https://www.precious-metal-services.com  (accessed 2024-05-26).

26. Otsuki, A., Gonçalves, P. P., Stieghorst, C. and Révay, Z. Non-destructive characterization of mechanically processed waste printed circuit boards: X-ray fluorescence spectroscopy and prompt gamma activation analysis. J. Compos. Sci., 2019, 3(2), 54. 
https://doi.org/10.3390/jcs3020054  

27. Ecoinvent. 
https://ecoinvent.org/database (accessed 2024-07-19).

28. European Commission. Environmental Footprint Methods: Calculating the Environmental Impact of Products and Services
https://green-business.ec.europa.eu/environmental-footprint-methods_en (accessed 2024-12-15).

29. United States Environmental Protection Agency. Understanding Global Warming Potentials
https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed 2024-12-15).

30. Laurent, A., Clavreul, J., Bernstad, A., Bakas, I., Niero, M., Gentil, E. et al. Review of LCA studies of solid waste man­agement systems – part II: methodological guidance for a better practice. Waste Manag., 2014, 34(3), 589–606. 
https://doi.org/10.1016/j.wasman.2013.12.004  

31. Brunner, P. H. and Rechberger, H. Practical Handbook of Material Flow Analysis. Lewis Publishers, New York, 2004.
https://doi.org/10.1201/9780203507209

32. Gonda, L. and Degrez, M. End-of-life management of computers in Brussels: environmental comparison of two treatment chains. Procedia CIRP, 2018, 69, 968–973. 
https://doi.org/10.1016/j.procir.2017.11.089  

33. Van Eygen, E., De Meester, S., Tran, H. P. and Dewulf, J. Resource savings by urban mining: the case of desktop and laptop computers in Belgium. Resour. Conserv. Recycl., 2016, 107, 53–64. 
https://doi.org/10.1016/j.resconrec.2015.10.032  

34. Hopewell, J., Dvorak, R. and Kosior, E. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B: Biol. Sci., 2009, 364(1526), 2115–2126. 
https://doi.org/10.1098/rstb.2008.0311  

35. Wäger, P. A., Hischier, R. and Eugster, M. Environmental impacts of the Swiss collection and recovery systems for waste electrical and electronic equipment (WEEE): a follow-up. Sci. Total Environ., 2011, 409(10), 1746–1756. 
https://doi.org/10.1016/j.scitotenv.2011.01.050  

36. Hosseini, P., Beersaerts, G., Duflou, J. and Pontikes, Y. Optimization of ball milling parameters for efficient copper slag valorization. Procedia CIRP, 2024, 122, 235–240. 
https://doi.org/10.1016/j.procir.2024.01.034  

37. IEA. Countries & Regions: Estonia
https://www.iea.org/countries/estonia (accessed 2024-07-19).

38. Kim, K.-H., Kabir, E. and Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int., 2015, 74, 136–143. 
https://doi.org/10.1016/j.envint.2014.10.005  

39. Kuusakoski Recycling. 
https://www.kuusakoski.com/en/global (accessed 2024-12-15).

40. Cronimet. 
https://cronimet.ee (accessed 2024-12-15).

41. Kat-Metal. 
https://katmetal.fi/frontpage (accessed 2024-12-15). 

42. iScrap App. 
https://iscrapapp.com/prices/?utm_source=rockaway-recycling&utm_medium=pop-up&utm_content=price-page (accessed 2024-12-15).

43. Cooley’s Statewide Scrap & Salvage. 
https://www.cooleysscrap.com/services/pricing (accessed 2024-12-15). 

44. I Buy Scrap Recycling.
 https://i-buy-scrap.com (accessed 2024-12-15). 

45. UK Metals. 
https://www.ukmetals.co.uk/scrap-metal-prices (accessed 2024-12-15). 

46. Reliable Recycling Center. 
https://www.reliablerecyclingcenter.com/pricing (accessed 2024-12-15). 

47. Arrow Metal & E-Waste Recycling. 
https://www.arrowscrap.com/prices (accessed 2024-12-15).

48. Rockaway Recycling. 
https://rockawayrecycling.com/metal/ins-copper-wire-cat-56 (accessed 2024-12-15). 

49. Rockaway Recycling.
 https://rockawayrecycling.com/metal/thhn-cable (accessed 2024-12-15). 

50. Krommenhoek Metals. 
https://www.kh-metals.nl/en/scrap-metal-prices (accessed 2024-12-15). 

51. London Metal Exchange. 
https://www.lme.com/en/metals/ferrous/lme-steel-scrap-cfr-turkey-platts#Trading+day+summary (accessed 2024-12-15).

52. Schulte, A., Lamb-Scheffler, M., Biessey, P. and Rieger, T. Prospective LCA of waste electrical and electronic equipment thermo-chemical recycling by pyrolysis. Chem. Ing. Tech., 2023, 95(8), 1268–1281. 
https://doi.org/10.1002/cite.202300036  

53. Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G. and Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag., 2017, 197, 177–198. 
https://doi.org/10.1016/j.jenvman.2017.03.084  

54. Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S. et al. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew. Sustain. Energy Rev., 2016, 61, 433–450. 
https://doi.org/10.1016/j.rser.2016.04.020  

55. European Commission. PCBRec Process: Waste Printed Circuit Board (WPCB) Recycling with Molten Salts. 
https://cordis.europa.eu/project/id/761495 (accessed 2024-05-29).

56. Khrustalev, D., Tirzhanov, A., Khrustaleva, A., Mustafin, M. and Yedrissov, A. A new approach to designing easily recyclable printed circuit boards. Sci. Rep., 2022, 12, 22199. 
http://dx.doi.org/10.1038/s41598-022-26677-y  

Back to Issue