ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Mechanical analysis of multi-surface TPMS lattices for bone applications; pp. 222–227
PDF | https://doi.org/10.3176/proc.2025.2.25

Authors
Mansoureh Rezapourian, Irina Hussainova
Abstract

Triply periodic minimal surfaces (TPMSs) offer customizable geometric and mechanical properties, making them highly suitable for bone tissue engineering. This study numerically analyzed five multi-surface TPMS lattice designs – PDL, PNG, PLG, SDL, and DNG – combined from six types of TPMSs: P (Primitive), D (Diamond), L (Lidinoid), G (Gyroid), S (Split-P), and N (Neovius), considering Ti6Al4V as the material. Geometric features, such as surface area (SA) and surface area-to-volume ratio (SA/VR), as well as mechanical properties, including elastic modulus (E), yield stress (Y), maximum compressive strength (CM), and energy absorption (EA), were evaluated through a quasi-static compression test. The multi-surface lattices exhibited smoother failure patterns, higher EA, and enhanced geometric features, including higher SA/VR compared to single lattices. PLG achieved the highest EA, while SDL demonstrated superior CM and the highest SA and SA/VR, highlighting its superior geometric complexity. Single lattices, such as D and S, exhibited higher E but showed brittle failure. These results underscore the potential of combining TPMSs for optimized scaffold designs in biomedical engineering.

References

Jiang, J., Huo, Y., Peng, X., Wu, C., Zhu, H. and Lyu, Y. 2024. Design of novel triply periodic minimal surface (TPMS) bone scaffold with multi-functional pores: lower stress shielding and higher mass transport capacity. Front. Bioeng. Biotechnol.12, 1401899.
https://doi.org/10.3389/fbioe.2024.1401899

Jin, S., Yamamoto, Y., Harada, Y., Kaneko, S., Oishi, K. and Ishibashi, Y. 2022. Effectiveness of photofunctionalized titanium alloy on osseointegration in rats with type 2 diabetes. J. Orthop. Surg. Res.17(1), 445.
https://doi.org/10.1186/s13018-022-03346-4

Lei, P., Qian, H., Zhang, T., Lei, T., Hu, Y., Chen, C. et al. 2022. Porous tantalum structure integrated on Ti6Al4V base by Laser Powder Bed Fusion for enhanced bony-ingrowth implants: in vitro and in vivo validation. Bioact. Mater.7, 3–13.
https://doi.org/10.1016/j.bioactmat.2021.05.025

Liu, Z., Dong, W., Shi, Z., Pei, J., Ma, T. and Fu, K. 2024. Mechanistic study on the role of 3D-printed biomimetic coral bone scaffolds in bone defect repair. Appl. Comput. Eng.63, 62–67.
https://doi.org/10.54254/2755-2721/63/20240995

Lu, S., Jiang, D., Liu, S., Liang, H., Lu, J., Xu, H. et al. 2022. Effect of different structures fabricated by additive manufacturing on bone ingrowth. J. Biomater. Appl.36(10), 1863–1872.
https://doi.org/10.1177/08853282211064398

Lu, Y., Huo, Y., Zou, J., Li, Y., Yang, Z., Zhu, H. et al. 2022. Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions. Proc. Inst. Mech. Eng. H236(8), 1157–1168.
https://doi.org/10.1177/09544119221102704

Lv, J., Jin, W., Liu, W., Qin, X., Feng, Y., Bai, J. et al. 2022. Selective laser melting fabrication of porous Ti6Al4V scaffolds with triply periodic minimal surface architectures: structural features, cytocompatibility, and osteogenesis. Front.  Bioeng. Biotechnol.10, 899531.
https://doi.org/10.3389/fbioe.2022.899531

Musthafa, H.-S. N., Walker, J., Rahman, T., Bjørkum, A., Mustafa, K. and Velauthapillai, D. 2023. In-silico prediction of mechanical behaviour of uniform gyroid scaffolds affected by its design parameters for bone tissue engineering applications. Computation11(9), 181.
https://doi.org/10.3390/computation11090181

Rasheed, S., Lughmani, W. A., Khan, M. M., Brabazon, D., Obeidi, M. A. and Ahad, I. U. 2023. The porosity design and deformation behavior analysis of additively manufactured bone scaffolds through finite element modelling and mechanical prop­erty investigations. J. Funct. Biomater.14(10), 496.
https://doi.org/10.3390/jfb14100496

Rezapourian, M. and Hussainova, I. 2023. Optimal mechanical properties of hydroxyapatite gradient Voronoi porous scaffolds for bone applications – a numerical study. J. Mech. Behav. Biomed. Mater.148, 106232.
https://doi.org/10.1016/j.jmbbm.2023.106232

Rezapourian, M., Kamboj, N. and Hussainova, I. 2021. Numerical study on the effect of geometry on mechanical behavior of triply periodic minimal surfaces. IOP Conf. Ser.: Mater. Sci. Eng., 1140, 012038.
https://doi.org/10.1088/1757-899X/1140/1/012038

Rezapourian, M., Kamboj, N., Jasiuk, I. and Hussainova, I. 2022. Biomimetic design of implants for long bone critical-sized de­fects. J. Mech. Behav. Biomed. Mater.134, 105370.
https://doi.org/10.1016/j.jmbbm.2022.105370

Rezapourian, M., Jasiuk, I., Saarna, M. and Hussainova, I. 2023. Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering. Int. J. Mech. Sci.251, 108353.
https://doi.org/10.1016/j.ijmecsci.2023.108353

Rezapourian, M., Kumar, R. and Hussainova, I. 2024. Effect of unit cell rotation on mechanical performance of selective laser melted gyroid structures for bone tissue engineering. Prog. Eng. Sci.1(2–3), 100011.
https://doi.org/10.1016/j.pes.2024.100011

Su, S., Chen, W., Zheng, M., Lu, G., Tang, W., Huang, H. et al. 2022. Facile fabrication of 3D-printed porous Ti6Al4V scaffolds with a Sr-CaP coating for bone regeneration. ACS Omega7(10), 8391–8402.
https://doi.org/10.1021/acsomega.1c05908

Verma, R., Kumar, J., Singh, N. K., Rai, S. K., Saxena, K. K. and Xu, J. 2022. Design and analysis of biomedical scaffolds using TPMS-based porous structures inspired from additive manufactur­ing. Coatings12(6), 839.
https://doi.org/10.3390/coatings12060839

Vigil, J., Lewis, K., Norris, N., Karakoç, A. and Becker, T. A. 2024. Design, fabrication, and characterization of 3D-printed multiphase scaffolds based on triply periodic minimal surfaces. Adv. Polym. Technol.2024(1), 4616496. 
https://doi.org/10.1155/2024/4616496

Wang, C., Wu, J., Liu, L., Xu, D., Liu, Y., Li, S. et al. 2023. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure. Front. Chem.11, 1190630.
https://doi.org/10.3389/fchem.2023.1190630

Wang, Z. and Li, P. 2018. Characterisation and constitutive model of tensile properties of selective laser melted Ti-6Al-4V struts for microlattice structures. Mater. Sci. Eng. A725, 350–358.
https://doi.org/10.1016/j.msea.2018.04.006

Yang, X., Wu, L., Li, C., Li, S., Hou, W., Hao, Y. et al. 2024. Synergistic amelioration of osseointegration and osteoimmuno­modu­la­tion with a microarc oxidation-treated three-dimensionally printed Ti-24Nb-4Zr-8Sn scaffold via surface activity and low elastic modulus. ACS Appl. Mater. Interfaces16(3), 3171–3186.
https://doi.org/10.1021/acsami.3c16459

Yin, C., Zhang, T., Wei, Q., Cai, H., Cheng, Y., Tian, Y. et al.  2021. Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration. Bioact. Mater., 7, 26–38.
https://doi.org/10.1016/j.bioactmat.2021.05.043

Zhang, C., Zhou, Z., Liu, N., Chen, J., Wu, J., Zhang, Y. et al. 2023. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Front. Bioeng. Biotechnol.11, 1258030.
https://doi.org/10.3389/fbioe.2023.1258030

Zhu, J., Zou, S., Mu, Y., Wang, J. and Jin, Y. 2022. Additively manufactured scaffolds with optimized thickness based on triply periodic minimal surface. Materials15(20), 7084.
https://doi.org/10.3390/ma15207084

Back to Issue