The synthesis of zinc silicate (Zn2SiO4) powders via the solid-state method was studied using amorphous and crystalline silica precursors. This work explores the impact of reaction temperature (700–1300 °C) on phase evolution and microstructural changes. A comprehensive characterization was carried out using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. X-ray diffraction analysis revealed a progression from unreacted precursors at lower temperatures to a mixed-phase composition (α-Zn2SiO4 and β-Zn2SiO4) at intermediate temperatures, ultimately resulting in a single-phase α-Zn2SiO4 at 1300 °C. Notably, Raman spectroscopy detected the presence of the metastable β-Zn2SiO4 phase. Morphological analysis using scanning electron microscopy demonstrated the important role of precursor type and reaction conditions on particle characteristics: crystalline silica yielded larger, more uniform particles, while amorphous silica promoted the formation of spherical Zn2SiO4 particles with an average diameter of approximately 1 μm. These findings are of significant interest for tailoring the properties of Zn2SiO4 ceramics to be used for advanced applications in optoelectronics and luminescence technologies.
1. Karazhanov, S. Zh., Ravindran, P., Fjellvåg, H. and Svensson, B. G. Electronic structure and optical properties of ZnSiO3 and Zn2SiO4. J. Appl. Phys., 2009, 106(12), 123701.
https://doi.org/10.1063/1.3268445
2. Afandi, M. M., Byeon, S., Kang, T., Kang, H. and Kim, J. Bright yellow luminescence from Mn2+-doped metastable zinc silicate nanophosphor with facile preparation and its practical application. Nanomaterials, 2024, 14(17), 1395.
https://doi.org/10.3390/nano14171395
3. Xie, X., Chen, J., Song, Y., Zhou, X., Zheng, K., Zhang, X. et al. Zn2SiO4: Eu 3+ micro-structures: controlled morphologies and luminescence properties. J. Lumin., 2017, 187, 564–572.
https://doi.org/10.1016/j.jlumin.2017.04.003
4. Singh, S., Singh, D., Siwach, P., Gupta, I. and Kumar, P. Synthesis strategies for rare earth activated inorganic phosphors: a mini review. Appl. Res., 2025, 4(1).
https://doi.org/10.1002/appl.202400190
5. Taylor, H. F. W. The dehydration of hemimorphite. Am. Mineral., 1962, 47(7–8), 932–944.
6. Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Artús, L., Jiménez, J., Wang, B. et al. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B, 2007, 75(16), 165202.
https://doi.org/10.1103/PhysRevB.75.165202
7. Scott, J. F. and Porto, S. P. S. Longitudinal and transverse optical lattice vibrations in quartz. Phys. Rev., 1967, 161(3), 903–910.
https://doi.org/10.1103/PhysRev.161.903
8. Loiko, P., Dymshits, O., Volokitina, A., Alekseeva, I., Shemchuk, D., Tsenter, M. et al. Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2SiO4 nanocrystals and doped with Er2O3 and Yb2O3: Part I. The role of heat-treatment. J. Lumin., 2018, 202, 47–56.
https://doi.org/10.1016/j.jlumin.2018.05.010
9. Czaja, M., Lisiecki, R., Juroszek, R. and Krzykawski, T. Luminescence properties of tetrahedral coordinated Mn2+; genthelvite and willemite examples. Minerals, 2021, 11(11), 1215.
https://doi.org/10.3390/min11111215
10. Milde, M., Dembski, S., Osvet, A., Batentschuk, M., Winnacker, A. and Sextl, G. Polymer-assisted sol–gel process for the preparation of photostimulable core/shell structured SiO2 / Zn2SiO4:Mn2+ particles. Mater. Chem. Phys., 2014, 148(3), 1055–1063.
https://doi.org/10.1016/j.matchemphys.2014.09.017