ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
An overview of smart workplace solutions and potential improvement areas; pp. 155–159
PDF | https://doi.org/10.3176/proc.2025.2.13

Authors
Karolin Kelpman, Kristo Karjust, Jüri Majak
Abstract

The development of Industry 5.0 aligns with the aims of the European Commission’s 2024–2029 priorities and contributes to three of the six key goals. Therefore, enhancing manufacturing practices remains a growing priority. However, flexible manufacturing systems (FMSs) and smart workplace solutions are still not widely used, especially in small and medium-sized enterprises (SMEs). A possible reason for this is that the process of adjusting and reconfiguring assembly lines is time-consuming, labour-intensive, requires higher investment and specialized expertise. However, an up-to-date review and analysis of the field is needed to start finding advanced solutions. This research identifies potential improvement areas for smart workplace solutions.

The current study provides an overview of the technologies of existing flexible manufacturing systems, pinpoints current limitations and research gaps, analyzes which areas could be improved by implementing AI methods and tools. The drawbacks of current solutions and existing AI capabilities are analyzed. Current solutions and AI-enhanced approaches are summarized and possible benefits of AI integration are highlighted. As a result, optimization strategies and procedures tailored to particular production processes will be developed in a future study.

References

1. European Parliament. Directorate-General for Parliamentary Research Services. The six policy priorities of the von der Leyen Commission: state of play in autumn 2021: in-depth analysis.  
https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/696205/EPRS_IDA(2021)696205_EN.pdf (accessed 2025-01-16).

2. Javaid, M., Haleem, A., Singh, R. P. and Suman, R. Enabling flexible manufacturing system (FMS) through the applications of Industry 4.0 technologies. Internet Things Cyber-Phys. Syst., 2022, 2, 49–62. 
https://doi.org/10.1016/j.iotcps.2022.05.005  

3. Barata, J. and Kayser, I. Industry 5.0 – past, present, and near future. Procedia Comput. Sci., 2023, 219, 778–788. 
https://doi.org/10.1016/j.procs.2023.01.351  

4. Zheng, C., Zhang, Y., Li, J., Bai, J., Qin, X. and Eynard, B. Survey on design approaches for robotic manufacturing systems in SMEs. Procedia CIRP, 2019, 84, 16–21. 
https://doi.org/10.1016/j.procir.2019.04.183  

5. Mahmood, K., Pizzagalli, S. L., Otto, T. and Symotiuk, I. Development of an AR-based application for assembly assis­tance and servicing. Procedia CIRP, 2024, 128, 638–643. 
https://doi.org/10.1016/j.procir.2024.04.017  

6. Romero, D. and Stahre, J. Towards the resilient operator 5.0: the future of work in smart resilient manufacturing systems. Procedia CIRP, 2021, 104, 1089–1094. 
https://doi.org/10.1016/j.procir.2021.11.183  

7. Zirar, A., Ali, S. I. and Islam, N. Worker and workplace artificial intelligence (AI) coexistence: emerging themes and research agenda. Technovation, 2023, 124, 102747. 
https://doi.org/10.1016/j.technovation.2023.102747  

8. Jimeno-Morenilla, A., Azariadis, P., Molina-Carmona, R., Kyratzi, S. and Moulianitis, V. Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: a review. Comput. Ind., 2021, 125, 103390. 
https://doi.org/10.1016/j.compind.2020.103390  

9. ElMaraghy, H., Monostori, L., Schuh, G. and ElMaraghy, W. Evolution and future of manufacturing systems. CIRP Ann., 2021, 70(2), 635–658. 
https://doi.org/10.1016/j.cirp.2021.05.008  

10. Simeone, A., Bica, G., Priarone, P. C. and Settineri, L. Enhancing operator health and safety in manufacturing: an intelligent digital humanization approach. Procedia CIRP, 2024, 122, 982–987. 
https://doi.org/10.1016/j.procir.2024.01.133  

11. Sun, X. and Song, Y. Unlocking the synergy: increasing productivity through human-AI collaboration in the Industry 5.0 era. Comput. Ind. Eng., 2025, 200, 110657. 
https://doi.org/10.1016/j.cie.2024.110657  

12. Walker, J., Childe, S. and Wang, Y. Analysing manufacturing enterprises to identify opportunities for automation and guide implementation – a review. IFAC-PapersOnLine, 2019, 52(13), 2273–2278. 
https://doi.org/10.1016/j.ifacol.2019.11.544  

13. Gladysz, B., Tran, T., Romero, D., van Erp, T., Abonyi, J. and Ruppert, T. Current development on the Operator 4.0 and transition towards the Operator 5.0: a systematic literature review in light of Industry 5.0. J. Manuf. Syst., 2023, 70, 160–185. 
https://doi.org/10.1016/j.jmsy.2023.07.008  

14. Mehrparvar, M., Majak, J. and Karjust, K. A comparative analysis of Fuzzy AHP and Fuzzy VIKOR methods for prio­ritization of the risk criteria of an autonomous vehicle system. Proc. Est. Acad. Sci., 2024, 73(2), 116–123. 
https://doi.org/10.3176/proc.2024.2.04  

15. Mehrparvar, M., Majak, J. and Karjust, K. Effect of aggregation methods in fuzzy technique for prioritization of criteria of automated vehicle system. AIP Conf. Proc., 2024, 2989(1), 020011. 
https://doi.org/10.1063/5.0189323  

16. Pikner, H., Sell, R., Majak, J. and Karjust, K. Safety system assessment case study of automated vehicle shuttle. Electronics, 2022, 11(7), 1162. 
https://doi.org/10.3390/electronics11071162  

17. Tšukrejev, P., Karjust, K. and Majak, J. Experimental evaluation and numerical modelling of the quality of photovoltaic modules. Proc. Est. Acad. Sci., 2021, 70(4), 477–483. 
https://doi.org/10.3176/proc.2021.4.15  

18. Raamets, T., Majak, J., Karjust, K., Mahmood, K. and Hermaste, A. Development of process optimization model for autonomous mobile robot used in production logistics. AIP Conf. Proc., 2024, 2989(1), 020008. 
https://doi.org/10.1063/5.0189299

Back to Issue