High-entropy carbide (Ti,V,Nb,Cr,Mo)Cx with varying carbon content (x = 13–16 wt%) was synthesized using conventional argon sintering at 1800 °C. Homogeneous distribution of elements was obtained at x = 15 wt% of C, while the presence of residual secondary carbide was observed among all samples with varied carbon content. Density of the high-entropy carbides increases with increasing carbon concentration. The results reveal significant changes in both the microstructure and phase composition. A precise carbon window is required to attain homogeneous distribution among the elements to form a stabilized high-entropy facecentered cubic (FCC) phase structure. Deviations from this narrow carbon window lead to the segregation of chromium in the microstructure, which in turn alters the stoichiometry of the high-entropy carbide system.
1. Gasparrini, C., Rana, D.-S., Le Brun, N., Horlait, D., Markides, C. N., Farnan, I. et al. On the stoichiometry of zirconium carbide. Sci. Rep., 2020, 10(1), 6347.
https://doi.org/10.1038/s41598-020-63037-0
2. Gusev, A. I., Rempel, A. A. and Magerl, A. J. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer Series in Materials Science, 47. Springer, Berlin, New York, 2001.
https://doi.org/10.1007/978-3-662-04582-4
3. Hossain, M. D., Borman, T., Kumar, A., Chen, X., Khosravani, A., Kalidindi, S. R. et al. Carbon stoichiometry and mechanical properties of high entropy carbides. Acta Mater., 2021, 215, 117051.
https://doi.org/10.1016/j.actamat.2021.117051
4. Oses, C., Toher, C. and Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater., 2020, 5(4), 295–309.
https://doi.org/10.1038/s41578-019-0170-8
5. He, Y., Peng, C., Xin, S., Li, K., Liang, S., Lu, X. et al. Vacancy effect on the preparation of high-entropy carbides. J. Mater. Sci., 2020, 55(16), 6754–6760.
https://doi.org/10.1007/s10853-020-04471-3
6. Hu, J., Zhang, Y., Yan, D. and Li, Z. Unveiling the role of carbon vacancies in microstructure evolution and mechanical properties of high-entropy carbides. J. Eur. Ceram. Soc., 2025, 45(4), 117080.
https://doi.org/10.1016/j.jeurceramsoc.2024.117080
7. Luo, S.-C., Guo, W.-M., Fang, Z.-L., Plucknett, K. and Lin, H.-T. Effect of carbon content on the microstructure and mechanical properties of high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics. J. Eur. Ceram. Soc., 2022, 42(2), 336–343.
https://doi.org/10.1016/j.jeurceramsoc.2021.10.019
8. Zhang, W., Chen, L., Lu, W., Huo, S., Wei, B., Wang, Y. et al. Non-stoichiometry of (TiZrHfVNbTa)Cx and its significance to the microstructure and mechanical properties. J. Eur. Ceram. Soc., 2022, 42(14), 6347–6355.
https://doi.org/10.1016/j.jeurceramsoc.2022.07.007
9. Miracle, D. B. and Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448–511.
https://doi.org/10.1016/j.actamat.2016.08.081
10. Kaufmann, K., Maryanovsky, D., Mellor, W. M., Zhu, C., Rosengarten, A. S., Harrington, T. J. et al. Discovery of high-entropy ceramics via machine learning. npj Comput. Mater., 2020, 6(1), 42.
https://doi.org/10.1038/s41524-020-0317-6
11. Wang, Y., Csanádi, T., Fogarassy, Z., Zhang, B., Sedlák, R., Wang, X. et al. The role of Cr addition on the processing and mechanical properties of high entropy carbides. J. Eur. Ceram. Soc., 2022, 42(13), 5273–5279.
https://doi.org/10.1016/j.jeurceramsoc.2022.06.026