ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Methodology for the measurement and estimation of pedestrian and cycle traffic at level crossings; pp. 126–131
PDF | https://doi.org/10.3176/proc.2025.2.07

Authors
Tanel Jairus, Stanislav Metlitski, Mihkel Kask, Kati Kõrbe
Abstract

Urban and suburban level crossings are critical intersection points between rail and pedestrian infrastructure, requiring careful monitoring and analysis of traffic patterns for safety and planning purposes. This paper presents a comprehensive methodology for measuring and estimating pedestrian and cycle traffic at urban and suburban level crossings. A dual-component system is introduced that considers separately regular crossing users and rail transport passengers, acknowledging their distinct temporal patterns. Three distinct temporal patterns were identified for both pedestrian movement and rail passenger flows through analysis of fixed counter data and passenger statistics, while a singular pattern was determined for cyclists. The methodology was validated at 14 railway crossings, establishing minimum requirements for measurement duration and optimal timing. The results indicate that counting periods of at least 24 hours are required, with optimal accuracy achieved during the spring and autumn months. This approach provides optimal resource usage for achieving adequate accuracy. Data collection and estimation supported by this framework will provide the grounds for evidence-based decision-making in railway crossing infrastructure planning and safety assessment.

References

1. Metaxatos, P. and Sriraj, P. S. Pedestrian safety at rail grade crossings: focus areas for research and intervention. Urban Rail Transit, 2015, 1(4), 238–248. 
https://doi.org/10.1007/s40864-016-0030-4  

2. Tarbijakaitse ja Tehnilise Järelevalve Amet. Õnnetuste statistika (Accident statistics). 
https://ttja.ee/ariklient/raudtee/onnetusjuhtumite-statistika-raudteel (accessed 2025-01-21).

3. Australian Transport Safety Bureau (ATSB). Australian Rail Safety Occurrence Data 1 July 2002 to 30 June 2012. 
https://www.atsb.gov.au/publications/2012/rr-2012-010 (accessed 2025-01-21).

4. Attard, M., Bergantino, A. S. and Intini, M. Effects of local urban characteristics and driving behaviour on injuries among pedestrians and cyclists in Malta. Transp. Res. Procedia, 2025, 82, 81–92. 
https://doi.org/10.1016/j.trpro.2024.12.029   

5. American Association of State Highway and Transportation Officials (AASHTO). AASHTO Guidelines for Traffic Data Programs. 2009. 
http://dl1.wikitransport.ir/book/AASHTO_Guidelines_for_Traffic_Data_Programs_2009.pdf (accessed 2025-01-21).

6. Federal Highway Administration. Traffic Monitoring Guide. 2001. 
http://www.https.omb.report/icr/201804-2125-003/doc/82404501 (accessed 2025-01-21). 

7. Zhong, M., Bagheri, E. and Christie, J. Improving group assignment and AADT estimation accuracy of short-term traffic counts using historical seasonal patterns & Bayesian statistics. Procedia Soc. Behav. Sci., 2012, 43, 607–617. 
https://doi.org/10.1016/j.sb spro.2012.04.134  

8. Fournier, N., Christofa, E. and Knodler, M. A. A sinusoidal model for seasonal bicycle demand estimation. Transp. Res. D: Transp. Environ., 2017, 50, 154–169. 
https://doi.org/10.1016/j.trd.2016.10.021  

9. Ahmed, F., Rose, G. and Jakob, C. Commuter cyclist travel behavior: examination of the impact of changes in weather. Transp. Res. Rec., 2013, 2387, 76–82. 
https://doi.org/10.3141/2387-09  

10. Jean-Louis, G., Eckhardt, M., Podschun, S., Mahnkopf, J. and Venohr, M. Estimating daily bicycle counts with Strava data in rural and urban locations. Travel Behav. Soc., 2024, 34, 100694. 
https://doi.org/10.1016/j.tbs.2023.100694  

11. Soto, G. W., Webber, B. J., Fletcher, K., Chen, T. J., Garber, M. D., Smith, A. et al. Association between passively collected walking and bicycling data and purposefully collected active commuting survey data – United States, 2019. Health & Place, 2023, 81, 103002. 
https://doi.org/10.1016/j.healthplace.2023.103002  

12. Esawey, M. E., Mosa, A. I. and Nasr, K. Estimation of daily bicycle traffic volumes using sparse data. Comput. Environ. Urban Syst., 2015, 54, 195–203. 
https://doi.org/10.1016/j.compenvurbsys.2015.09.002  

13. Tera, H., Hadachi, A. and Pourmoradnasseri, M. Data-driven approach for assessing the impact of newly developed cycling infrastructure on cyclists’ route choice. J. Transp. Geogr., 2025, 123, 104094. 
https://doi.org/10.1016/j.jtrangeo.2024.104094  

14. Findenegg, J. and Wessel, J. Pump or pedal? The impact of fuel prices on cycling in Germany. Transp. Res. A: Policy Pract., 2024, 186, 104146. 
https://doi.org/10.1016/j.tra.2024.104146  

15. Miranda-Moreno, L. F. and Nosal, T. Weather or not to cycle: temporal trends and impact of weather on cycling in an urban environment. Transp. Res. Rec., 2011, 2247(1), 42–52. 
https://doi.org/10.3141/2247-06  

16. Wessel, J. Using weather forecasts to forecast whether bikes are used. Transp. Res. A: Policy Pract., 2020, 138, 537–559. 
https://doi.org/10.1016/j.tra.2020.06.006  

17. Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J. et al. YOLOv10: real-time end-to-end object detection. 2024. https://arxiv.org/abs/2405.14458

Back to Issue