ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Finite element simulation and experimental study on defects in CuZn40Pb2 brass alloy water valve covers during hot forging; pp. 82–89
PDF | https://doi.org/10.3176/proc.2025.1.08

Authors
Mehmet Ceviz, Isik Cetintav
Abstract

This study investigates the closed-die hot forging process of a CuZn40Pb2 brass alloy water valve cover using a traditional single-stroke forging press. Key factors affecting defect formation in the material geometry include the cylindrical workpiece geometry and die temperature. The finite element model (FEM) developed to optimize temperature effects on material flow behavior was implemented using Deform® 3D software. The simulations considered geometry, filling order, and force as inputs. Experimental trials showed that the coefficient of friction, which decreases with lubricant use, significantly impacts material flow. This is because frictional forces during forging heat the dies, reducing the coefficient of friction and potentially increasing defect likelihood. Stress and strain analysis from the simulations indicated a complex interplay between temperature and friction coefficient, influencing defect formation. The experimental results aligned with the simulations, validating computational modeling as a tool for predicting and mitigating defects. This study offers valuable insights into the closed-die hot forging of CuZn40Pb2 brass alloy water valve covers, emphasizing the importance of temperature and friction control. These findings can improve forging process design and operation, leading to high-quality product production.

References

1. Álvarez Hostos, J. C., Bencomo, A. D., Puchi Cabrera, E. S., Guérin, J.-D. and Dubar, L. Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique. Int. J. Plast., 2018, 103, 119–142. 
https://doi.org/10.1016/j.ijplas.2018.01.005  

2. Biswal, S. and Tripathy, S. Effect of process variables in closed die hot forging process: a review. In Current Advances in Mechanical Engineering (Acharya, S. K. and Mishra, D. P., eds) Springer, Singapore, 2021, 899–907.
https://doi.org/10.1007/978-981-33-4795-3_83

3. Cao, J., Brinksmeier, E., Fu, M., Gao, R. X., Liang, B., Merklein, M. et al. Manufacturing of advanced smart tooling for metal forming. CIRP Ann., 2019, 68(2), 605–628. 
https://doi.org/10.1016/j.cirp.2019.05.001  

4. Chander, S. and Chawla, V. Failure of hot forging dies – an updated perspective. Mater. Today Proc., 2017, 4(2PA), 1147–1157. 
https://doi.org/10.1016/j.matpr.2017.01.131  

5. Chen, J., Yin, H. and Sun, Q. Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta Mater., 2020, 195, 141–150. 
https://doi.org/10.1016/j.actamat.2020.05.008  

6. Finfrock, C. B., Thrun, M. M., Bhattacharya, D., Ballard, T. J., Clarke, A. J. and Clarke, K. D. Strain rate dependent ductility and strain hardening in Q&P steels. Metall. Mater. Trans. A, 2021, 52(3), 928–942. 
https://doi.org/10.1007/s11661-020-06127-y  

7. Gao, S., Geng, S., Jiang, P., Mi, G., Han, C. and Ren, L. Numerical analysis of the deformation behavior of 2205 duplex stainless steel TIG weld joint based on the microstructure and micro-mechanical properties. Mater. Sci. Eng. A, 2021, 815, 141303. 
https://doi.org/10.1016/j.msea.2021.141303  

8. Ghassemali, E., Song, X., Zarinejad, M., Atsushi, D. and Tan, M. J. Bulk metal forming processes in manufacturing. In Handbook of Manufacturing Engineering and Technology (Nee, A., ed.) Springer, London, 2013, 1–50. 
https://doi.org/10.1007/978-1-4471-4976-7_44-31  

9. Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L., Łukaszek-Sołek, A. et al. Recent development trends in metal forming. Arch. Civ. Mech. Eng., 2019, 19(3), 898–941. 
https://doi.org/10.1016/j.acme.2019.04.005  

10. Hawryluk, M. Review of selected methods of increasing the life of forging tools in hot die forging processes. Arch. Civ. Mech. Eng., 2016, 16(4), 845–866. 
https://doi.org/10.1016/j.acme. 2016.06.001  

11. Hopper, C., Pruncu, C. I., Hooper, P. A., Tan, Z., Yang, S.-T., Liu, Y. et al. The effects of hot forging on the preform additive manufactured 316 stainless steel parts. Micron, 2021, 143, 103026. 
https://doi.org/10.1016/j.micron.2021.103026

12. Ji, H., Cai, Z., Pei, W., Huang, X. and Lu, Y. DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: experiment and finite element simulation. J. Mater. Res. Technol., 2020, 9(3), 4340–4355. 
https://doi.org/10.1016/j.jmrt.2020.02.059  

13. Kleiner, M., Chatti, S. and Klaus, A. Metal forming techniques for lightweight construction. J. Mater. Res. Technol., 2006, 177(1–3), 2–7. 
https://doi.org/10.1016/j.jmatprotec.2006.04.085  

14. Kuncicka, L. and Kocich, R. Effects of temperature (in)homogeneity during hot stamping on deformation behavior, structure, and properties of brass valves. Adv. Eng. Mater., 2022, 24(7), 2101414. 
https://doi.org/10.1002/adem.202101414  

15. Li, L. X., Peng, D. S., Liu, J. A. and Liu, Z. Q. An experiment study of the lubrication behavior of graphite in hot compression tests of Ti–6Al–4V alloy. J. Mater. Proc. Technol. 2001, 112(1), 1–5. 
https://doi.org/10.1016/S0924-0136(00)00845-1

16. Lin, Y. C., Chen, M.-S. and Zhong, J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Comput. Mater. Sci., 2008, 43(4), 1117–1122. 
https://doi.org/10.1016/j.commatsci.2008. 03.010  

17. Ma, Q., Lin, Z.-Q. and Yu, Z.-Q. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM. Int. J. Adv. Manuf. Technol., 2009, 40(3–4), 253–260. 
https://doi.org/10.1007/s00170-007-1337-9  

18. Mathew, C., Koshy, J. and Varma, D. P. Study of forging defects in integral axle arms. 2013. https://api.semanticscholar.org/ CorpusID:111078216 

19. Obiko, J. O., Mwema, F. M. and Bodunrin, M. O. Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Appl. Sci., 2019, 1(9), 1044. 
https://doi.org/10.1007/s42452-019-1087-y  

20. Ralph, B. J., Sorger, M., Schödinger, B., Schmölzer, H.-J., Hartl, K. and Stockinger, M. Implementation of a six-layer smart factory architecture with special focus on transdisciplinary engineering education. Sensors, 2021, 21, 2944. 
https://doi.org/10.3390/s21092944  

21. Razali, M. K., Kim, S. W., Irani, M., Kim, M. C. and Joun, M. S. Practical quantification of the effects of flow stress, friction, microstructural properties, and the tribological environment on macro- and micro-structure formation during hot forging. Tribol. Int., 2021, 164, 107226. 
https://doi.org/10.1016/j.triboint.2021.107226  

22. Shivananda Murthy, K. V., Girish, D. P., Keshavamurthy, R., Varol, T. and Koppad, P. G. Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging. Prog. Nat. Sci. Mater. Int., 2017, 27(4), 474–481. 
https://doi.org/10.1016/j.pnsc.2017.08.005  

23. Tekkaya, A. E., Allwood, J. M., Bariani, P. F., Bruschi, S., Cao, J., Gramlich, S. et al. Metal forming beyond shaping: predict­ing and setting product properties. CIRP Ann., 2015, 64(2), 629–653. 
https://doi.org/10.1016/j.cirp.2015.05.001  

24. Alimirzaloo, V., Khangahi, A. A. and Gadim, H. G. Minimisation of the damage in the extrusion process of titanium alloy blades using the response surface method and finite element analysis. Aust. J. Mech. Eng., 2018, 18(sup1), S1–S14. 
https://doi.org/10.1080/14484846.2018.1429040  

25. Zhang, Y., Xu, H., Peng, R., Lu, Y. and Zhu, L. The state of the art of finite element analysis in mechanical clinching. Int. J. Precis. Eng. Manuf. Green Technol., 2022, 9(4), 1191–1214. 
https://doi.org/10.1007/s40684-021-00366-z

26. Zhou, J., Wang, F.-L., Wang, M.-H. and Xu, W.-J. Study on forming defects in the rolling process of large aluminum alloy ring via adaptive controlled simulation. Int. J. Adv. Manuf. Technol., 2011, 55(1–4), 95–106. 
https://doi.org/10.1007/s00170-010-3023-6  

Back to Issue