The analysis of polycyclic aromatic hydrocarbons and polychlorinated biphenyls is an important topic in environmental analysis, and several analysis procedures have already been proposed. Following the approach of analytical quality by design (AQbD) contributes to the development of simultaneous identification and quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), alkylated PAHs and aliphatic compounds in soil by the gas chromatography-mass spectrometry (GC-MS) analytical technique, using the mechanical extraction method for sample preparation, which results in the modified method with superior analytical parameters. In the study, the set-up of design space (DS) for method development was introduced, including the selection of an appropriate gas chromatography (GC) column. Subsequently, design of experiment enabled finding the optimal GC conditions for the new method that allowed achieving adequate resolution and recovery. Method development involved changes in sample preparation, making it simpler and faster. Decreasing the number of different extraction steps enabled reducing staff numbers and consumable costs. As a result, methods of analysis of PAHs, PCBs and aliphatic and aromatic compounds in a single run were developed, offering reliable accuracy, precision, linearity and recovery rates that fully comply with Swedish regulations. This new method and its introduction to laboratory practice was validated, and the greenness of the method was evaluated.
1. ICH. ICH Harmonized Tripartite Guideline. Pharmaceutical Development Q8(R2) 2009.
https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf (accessed 2024-11-24).
2. ICH. ICH Harmonized Tripartite Guideline. Pharmaceutical Quality System Q10 2008.
https://database.ich.org/sites/default/files/Q10%20Guideline.pdf (accessed 2024-11-24).
3. ICH. ICH Harmonized Guideline. Quality Risk Management Q9(R1) 2023.
https://database.ich.org/sites/default/files/ICH_Q9%28R1%29_Guideline_Step4_2023_0126_0.pdf (accessed 2024-11-24).
4. Hakemeyer, C., McKnight, N., St. John, R., Meier, S., Trexler-Schmidt, M., Kelley, B. et al. Process characterization and design space definition. Biologicals, 2016, 44(5), 306–318.
https://doi.org/10.1016/j.biologicals.2016.06.004
5. Ng, K. and Rajagopalan, N. Application of quality by design and risk assessment principles for the development of formulation design space. In Quality by Design for Biopharmaceuticals: Principles and Case Studies (Rathore, A. S. and Mhatre, R., eds). Wiley, Hoboken, NJ, 2008, 161–174.
https://doi.org/10.1002/9780470466315.ch9
6. Manzon, D., Claeys-Bruno, M., Declomesnil, S., Carité, C. and Sergent, M. Quality by design: comparison of design space construction methods in the case of design of experiments. Chemometr. Intell. Lab. Sys., 2020, 200, 104002.
https://doi.org/10.1016/j.chemolab.2020.104002
7. Cocco, P., Ayaz-Shah, A., Messenger, M. P., West, R. M. and Shinkins, B. Target product profiles for medical tests: a systematic review of current methods. BMC Med., 2020, 119(18).
https://doi.org/10.1186/s12916-020-01582-1
8. Jackson, P., Borman, P., Campa, C., Chatfield, M., Godfrey, M., Hamilton, P. et al. Using the analytical target profile to drive the analytical method lifecycle. Anal. Chem., 2019, 91(4), 2577–2585.
https://doi.org/10.1021/acs.analchem.8b04596
9. Kalbe, U., Lehnik‑Habrink, P., Bandow, N. and Sauer, A. Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil. Environ. Sci. Eur., 2019, 31(29).
https://doi.org/10.1186/s12302-019-0211-3
10. Eurachem. The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics. 2nd ed., 2014.
https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed 2024-11-24).
11. ICH. ICH Harmonized Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1) 1994.
https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed 2024-11-24).
12. Deidda, R., Orlandini, S., Hubert, P. and Hubert, C. Risk-based approach for method development in pharmaceutical quality control context: a critical review. J. Pharm. Biomed. Anal., 2018, 161, 110–121.
https://doi.org/10.1016/j.jpba.2018.07.050
13. Ishikawa, K. Introduction to Quality Control. Taylor & Francis, 1990.
14. Fukuda, I. M., Pinto, C. F. F., dos Santos Moreira, C., Saviano, A. M. and Lourenço, F. R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci., 2018, 54(special), e01006.
https://doi.org/10.1590/s2175-97902018000001006
15. von Stosch, M., Schenkendorf, R., Geldhof, G., Varsakelis, C., Mariti, M., Dessoy, S. et al. Working within the design space: do our static process characterization methods suffice? Pharmaceutics, 2020, 12(6), 562.
https://doi.org/10.3390/pharmaceutics12060562
16. Mas, S., de Juan, A., Tauler, R., Olivieri, A. C. and Escandar, G. M. Application of chemometric methods to environmental analysis of organic pollutants: a review. Talanta, 2010, 80(3), 1052–1067.
https://doi.org/10.1016/j.talanta.2009.09.044
17. European Environment Agency. Down to Earth: Soil Degradation and Sustainable Development in Europe 2000.
https://www.eea.europa.eu/publications/Environmental_issue_series_16/file (accessed 2024-11-24).
18. Lehoux, A. P., Petersen, K., Leppänen, M. T., Snowball, I. and Olsen, M. Status of contaminated marine sediments in four Nordic countries: assessments, regulations, and remediation approaches, J. Soils Sediments, 2020, 20, 2619–2629.
https://doi.org/10.1007/s11368-020-02594-3
19. Norwegian Pollution Control Authority. Guidelines for the Risk Assessment of Contaminated Sites. https://www.miljodirektoratet.no/globalassets/publikasjoner/klifsft/publikasjoner/andre/1691/ta1691.pdf (accessed 2024-11-24).
20. Ministry of the Environment. Environmental Damage Fund.
https://ym.fi/en/environmental-damage-fund (accessed 2024-11-24).
21. Danish Environmental Protection Agency. Environmental Factors and Health. The Danish Experience 2001.
https://www2.mst.dk/udgiv/publications/2001/87-7944-519-5/pdf/87-7944-518-7.pdf (accessed 2024-11-24).
22. Grøn, C., Borling, P., Andersen, L., Cohr, K.-H., Hansen, J. B., Oberender, A. et al. Olie i jord – forslag til analysemetode og justering af jordkvalitetskriterier, samt grundlag for afskæringskriterier. Miljøprojekt Nr. 1225 2008. Teknologiudviklingsprogrammet for jord- og grundvandsforurening (Oil in soil – analysis method proposal and adjustment for soil quality criteria, as well as basis for cutoff criteria. Environmental project No. 1225 2008. Technology development program for soil and groundwater pollution).
https://www2.mst.dk/udgiv/publikationer/2008/978-87-7052-725-5/pdf/978-87-7052-726-2.pdf (accessed 2024-11-24).
23. Nordic Council of Ministers. Nordic Environmental Permitting Processes.https://www.researchgate.net/publication/372090099_Title_Nordic_Environmental_Permitting_Processes (accessed
24. Svenska Petroleum Institutet. Efterbehandling av förorenade bensinstationer och dieselanläggningar 2010 (Remediation of contaminated gas stations and diesel facilities).
https://drivkraftsverige.se/wp-content/uploads/2023/02/SPBI-rekebh-fororenade-bensinst-dieselanluppdaterad20120129.pdf (accessed 2024-11-24).
25. Naturvårdsverket. Riktvärden för förorenad mark. Modellbeskrivning och vägledning (Guideline values for contaminated soil. Model description and guidance 2009).
https://www.naturvardsverket.se/globalassets/media/publikationer-pdf/5900/978-91-620-5976-7.pdf (accessed 2024-11-24).
26. Eliaeson, K., Kaj, L., Rosenqvist, L., Allard, A-S. and Graae, L. Påverkan från naturligt organiskt material i GC-MS analyser 2018 (The influence of natural organic material in GC-MS analyses).
https://www.ivl.se/download/18.694ca0617a1de98f473864/1628417134444/FULLTEXT01.pdf (accessed 2024-11-24).
27. Olivares, L. and Lindén, P. Instruktion för analys av fraktionen Aromater >C16-C35 2010 (Instruction for analysis of the aromatic fraction >C16–C35).
https://www.naturvardsverket.se/4a437e/globalassets/vagledning/fororenade-omraden/riktvarden/sis-tk-535-n-012-sis-instruktion-tunga-aromater-c16-c35.pdf (accessed 2024-11-24).
28. Gomes, H. I., Ottosen, L. M., Ribeiro, A. B. and Dias-Ferreira, C. Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. J. Environ. Manage., 2015, 151, 550–555.
https://doi.org/10.1016/j.jenvman.2015.01.015
29. Jurjeva, J. and Koel, M. The chemometric approach to identification of residual oil contamination at former primitive asphalt pavement plants. Oil Shale, 2019, 36(3), 410–430.
https://doi.org/10.3176/oil.2019.3.04
30. Magnusson, B., Näykki, T., Hovind, H. and Krysell, M. Handbook for calculation of measurement uncertainty in environmental laboratories (NT TR 537, ed. 3.1) 2012.
https://www.nordtest.info/wp/2012/10/29/handbook-for-calculation-of-measurement-uncertainty-in-environmental-laboratories-nt-tr-537-edition-3-1/ (accessed 2024-11-24).
31. Hibbert, D. B. Experimental design in chromatography: a tutorial review. J. Chromatogr. B, 2012, 910, 2–13.
https://doi.org/10.1016/j.jchromb.2012.01.020
32. JMP.
https://www.jmp.com/en_us/home.html (accessed 2024-11-24).
33. Wang, X., Cheng, Y., Dong, M., Zhao, L., Chen, L., Feng, T. et al. Research on correcting high-mass discrimination effect of the quadrupole mass spectrometer with dodecane. 2023. SSRN, 2023, early access.
https://ssrn.com/abstract=4501270 (accessed 2024-11-24).
34. ISO 16703:2011. Soil quality – Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography.
https://www.evs.ee/en/evs-en-iso-16703-2011 (accessed 2024-11-24).
35. ISO 11465:1993. Soil quality – Determination of dry matter and water content on a mass basis – Gravimetric method.
https://www.iso.org/standard/20886.html (accessed 2024-11-24).
36. Robbat, A., Jr. and Wilton, N. M. A new spectral deconvolution – selected ion monitoring method for the analysis of alkylated polycyclic aromatic hydrocarbons in complex mixtures. Talanta, 2014, 125, 114–124.
https://doi.org/10.1016/j.talanta.2014.02.068
37. Yamada, T. M., Souza, D. A., Morais, C. R. and Mozeto, A. A. Validation of a method for the analysis of PAHs in bulk lake sediments using GC–MS. J. Chromatogr. Sci., 2009, 47(9), 794–799.
https://doi.org/10.1093/chromsci/47.9.794
38. Volk, S. and Gratzfeld-Huesgen, A. Agilent application solution. Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection 2011.
https://www.agilent.com/cs/library/applications/5990-8414EN.pdf (accessed 2024-11-24).
39. Krzemień-Konieczka, I. and Buszewski, B. Determining polychlorinated biphenyls in soil using accelerated solvent extraction (ASE). Pol. J. Environ. Stud., 2015, 24(5), 2029–2033.
https://doi.org/10.15244/pjoes/41589
40. Sadler, R. and Connell, D. Analytical methods for the determination of total petroleum hydrocarbons in soil. In Proceedings of the Fifth National Workshop on the Assessment of Site Contamination (Langley, A., Gilbey, M. and Kennedy, B., eds), 2003, 133–150.
https://www.nepc.gov.au/sites/default/files/2022-09/asc-wkshoppaper-09-tphs-sadler-petrol-hydro-soil-200301.pdf (accessed 2024-11-24).
41. Włóka, D. and Placek, A. Study of the effectiveness of the new method for the rapid PAHs analysis in soil. Acta Innov., 2015, 17, 5–11.
42. Swedish Chemicals Agency. Swedish rules on chlorinated solvents.
https://www.kemi.se/en/rules-and-regulations/rules-applicable-in-sweden-only/certain-swedish-restrictions-and-bans/chlorinated-solvents (accessed 2024-11-24).
43. Lau, E. V., Gan, S. and Ng, H. K. Extraction techniques for polycyclic aromatic hydrocarbons in soils. Int. J. Anal. Chem., 2010, 2010, 398381.
https://doi.org/10.1155/2010/398381
44. Zhou, W., Zhang, H., Deng, C., Chen, Y., Liao, J., Chen, Z. et al. Solvent-assisted vacuum desorption coupled with gas chromatography-tandem mass spectrometry for rapid determination of polycyclic aromatic hydrocarbons in soil samples. J. Chromatogr. A, 2019, 1604, 460473.
https://doi.org/10.1016/j.chroma. 2019.460473
45. Song, Y. F., Jing, X., Fleischmann, S. and Wilke, B.-M. Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere, 2002, 48(9), 993–1001.
https://doi.org/10.1016/S0045-6535(02)00180-7
46. Sajid, M. and Płotka-Wasylka, J. Green analytical chemistry metrics: a review. Talanta, 2022, 238(P2), 123046.
https://doi.org/10.1016/j.talanta.2021.123046
47. Pena-Pereira, F., Wojnowski, W. and Tobiszewski, M. AGREE–analytical GREEnness metric approach and software. Anal. Chem., 2020, 92(14), 10076–10082.
https://doi.org/10.1021/acs.analchem.0c01887
48. Manousi, N., Wojnowski, W., Płotka-Wasylka, J. and Samanidou, V. Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality. Green Chem., 2023, 25, 7598–7604.
https://doi.org/10.1039/d3gc02347h