The experiment was carried out in the years 2020−2022 at the Estonian University of Life Sciences, Polli Horticultural Research Centre, with 16 prospective blackcurrant hybrids. The aim of the experiment was to study the agronomical and fruit quality traits of the selected hybrids and to identify the genotypes with the best properties. The following traits were recorded: phen ology, winter hardiness, resistance to Sphaerotheca mors-uvae Schw., Drepanopeziza ribis Kleb. and Mycosphaerella ribis Lind., the number of flowers and berries in a cluster, the drop of flowers and unripe berries as well as the yield and weight of the berries. Among the bio chemical characteristics, the content of soluble solids (°Brix), total acids and ascorbic acid in the berries of the most promising genotypes were determined. Genotypes 14-11-4 (SRI9154-3 × ‘Karri’), 11-13-3 (‘Katyusha’ × ‘Ben Finlay’) and 9-13-2 (‘Minaj Smyriov’ × ‘Ben Finlay’) were shown to be winter-hardy, disease-resistant and associated with good yield potential, a high number of fruits per cluster and a high ascorbic acid content in the berries.
Akagić, A., Oras, A. V., Žuljević, S. O., Spaho, N., Drkenda, P., Bijedić, A. et al. 2020. Geographic variability of sugars and organic acids in selected wild fruit species. Foods, 9(4), 462.
https://doi.org/10.3390/foods9040462
Allwood, J. W., Woznicki, T. L., Xu, Y., Foito, A., Aaby, K., Sungurtas, J. et al. 2019. Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics, 15, 12.
https://doi.org/10.1007/s11306-018-1462-5
Brennan, R., Stewart, D. and Russell, J. 2008. Developments and progress in Ribes breeding. Acta Hortic., 777, 49–56.
https://doi.org/10.17660/ActaHortic.2008.777.3
Crespo, P., Bordonaba, J. G., Terry, L. A. and Carlen, C. 2010. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem., 122(1), 16–24.
https://doi.org/10.1016/j.foodchem.2010.02.010
Dmitriyeva, A. M. and Korovin, K. L. 2008. Результаты изучения сортов черной смородины в Беларуси (Results of blackcurrant variety study in Belarus). Plodovodstvo, 20, 157–162.
Estonian Weather Service.
https://www.keskkonnaportaal.ee/ (accessed 2022-11-24).
Hegedús, A., Engel, R., Abrankó, L., Balogh, E., Blázovics, A., Hermán, R. et al. 2010. Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: variations from genotypes, years, and analytical methods. J. Food Sci., 75(9), 722–730.
https://doi.org/10.1111/j.1750-3841.2010.01826.x
Jarret, D., Jennings, N., Williams, D. and Graham, J. 2020. Development and use of genetic tools in Rubus and Ribes breeding at James Hutton Institute/Limited. Acta Hortic., 1277, 1–10.
https://doi.org/10.17660/ActaHortic.2020.1277.1
Kaldmäe, H., Kikas, A., Arus, L. and Libek, A.-V. 2013. Genotype and microclimate conditions influence ripening pattern and quality of blackcurrant (Ribes nigrum L.) fruit. Zemdirbyste-Agricult., 100(2), 167–174.
https://doi.org/10.13080/z-a.2013.100.021
Kikas, A. and Libek, A.-V. 2023. The Estonian blackcurrant cultivar ‘Elmar’. Acta Hortic., 1381, 69–74.
https://doi.org/10.17660/ActaHortic.2023.1381.9
Kikas, A., Laurson, P. and Libek, A.-V. 2019. Оценка белорусских и эстонских сортов черной смородины (Ribes nigrum L.) в Эстонии (Evaluation of Belorussian and Estonian blackcurrant Ribes nigrum L. cultivars in Estonia). Plodovodstvo, 31, 13–18.
Masny, A., Pluta, S. and Seliga, Ł. 2018. Breeding value of selected blackcurrant (Ribes nigrum L.) genotypes for early-age fruit yield and its quality. Euphytica, 214, 89.
https://doi.org/10.1007/s10681-018-2172-9
Mikulic-Petkovsek, M., Rescic, J., Schmitzer, V., Stampar, F., Slatnar, A., Koron, D. et al. 2015. Changes in fruit quality parameters of four Ribes species during ripening. Food Chem., 173, 363–374.
https://doi.org/10.1016/j.foodchem.2014.10.011
Mikulic-Petkovsek, M., Veberič, R., Stampar, F. and Koron, D. 2016. Quality parameters of black and red currants during ripening. Acta Hortic., 1139, 651–656.
https://doi.org/10.17660/Acta Hortic.2016.1139.112
Miladinović, B., Branković, S., Živanović, S., Kostić, M., Šavikin, K., Ðorđević, B. et al. 2021. Flavonols composition of Ribes nigrum L. juices and their impact on spasmolytic activity. J. Berry Res. 11(2), 171–186.
https://doi.org/10.3233/JBR-200529
Pedersen, H. L. 2008. Juice quality and yield capacity of black currant cultivars in Denmark. Acta Hortic., 777, 510–516.
https://doi.org/10.17660/ActaHortic.2008.777.78
Pott, D. M., Durán-Soria, S., Allwood, J. W., Pont, S., Gordon, S. L., Jennings, N. et al. 2023. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits. Food Chem., 402, 134360.
https://doi.org/10.1016/j.foodchem.2022.134360
Preedy, K., Brennan, R., Jones, H. and Gordon, S. 2020. Improved models of the effects of winter chilling on blackcurrant (Ribes nigrum L.) show cultivar specific sensitivity to warm winters. Agric. For. Meteorol., 280, 107777.
https://doi.org/10.1016/j.agrformet.2019.107777
Rakonjac, V., Djordjević, B., Fotirić-Akšić M., Vulić, T. and Djurović, D. 2015. Estimation of variation and correlation analysis for yield components in black currant cultivars. Genetica, 47(3), 785–794.
https://doi.org/10.2298/GENSR1503785R
Sasnauskas, A., Rugienius, R., Mazeikiene, I., Bendokas, V. and Stanys, V. 2019. Small fruit breeding tendencies in Lithuania: a review. Acta Hortic., 1265, 225–232.
https://doi.org/10.17660/ActaHortic.2019.1265.32
Stanys, V., Bendokas, V., Rugienius, R., Sasnauskas, A., Frercks, B., Mažeikienė, I. et al. 2019. Management of anthocyanin amount and composition in genus Ribes using interspecific hybridisation. Sci. Hortic., 247, 123–129.
https://doi.org/10.1016/j.scienta.2018.12.014
Tian, Y., Laaksonen, O., Haikonen, H., Vanag, A., Ejaz, H., Linderborg, K. et al. 2019. Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. J. Agric. Food Chem., 67(19), 5621–5633.
https://doi.org/10.1021/acs.jafc.9b00033
Vagiri, M., Ekholm, A., Öberg, E., Johansson, E., Andersson, S. C. and Rumpunen, K. 2013. Phenols and ascorbic acid in black currants (Ribes nigrum L.): variation due to genotype, location, and year. J. Agric. Food Chem., 61(39), 9298–9306.
https://doi.org/10.1021/jf402891s
Woznicki, T. L., Heide, O. M., Sønsteby, A., Wold, A.-B. and Remberg, S. F. 2015. Yield and fruit quality of black currant (Ribes nigrum L.) are favoured by precipitation and cool summer conditions. Acta Agric. Scand. B Soil Plant Sci., 65,(8), 702–712.
https://doi.org/10.1080/09064710.2015.1052093
Woznicki, T. L., Sønsteby, A., Aaby, K., Martinsen, B. K., Heide, O. M., Wold, A.-B. et al. 2017. Ascorbate pool, sugars and organic acids in black currant (Ribes nigrum L.) berries are strongly influenced by genotype and post-flowering temperature. J. Sci. Food Agric., 97(4), 1302–1309.
https://doi.org/10.1002/jsfa.7864
Zheng, J., Huang, C., Yang, B., Kallio, H., Liu, P. and Ou, S. 2019. Regulation of phytochemicals in fruits and berries by environmental variation – sugars and organic acids. J. Food Biochem., 43(6), 1–18.
https://doi.org/10.1111/jfbc.12642