ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Modelling of the closed equilibrium system H2O–(CO2)W–CaCO3–NaH2PO4 for wastewater treatment applications; pp. 15–22
PDF | https://doi.org/10.3176/proc.2025.1.02

Authors
Ivar Zekker, Oleg Artemchuk, Ergo Rikmann, Kalev Uiga, Laura Daija, Faysal-Al Mamun, Andrejs E. Krauklis, Ruta Ozola-Davidane, Taavo Tenno, Toomas Tenno†
Abstract

Water pollution caused by nitrogen and phosphorus compounds triggers algal blooms and poses challenges to aquatic organisms. Wastewater treatment ap plications represent critical areas where fundamental models of phosphorus equilibria, prevalent in municipal and reject water streams, are essential. This paper focuses on studying the closed equilibrium system H2O–(CO2)W–CaCO3–NaH2PO4, elucidating the structural distribution of ions and mol ecules within this system. Utilizing the iteration method, we calculate pH, concentrations of formed ions and molecules, and proton transfer parameters based on a developed proton transfer model. Upon the initial formation of the equilibrium system H2O–(CO2)W−CaCO3, CO32– ions released from the dis solution of CaCO3 bind protons (Δ[H+]CO32–) originating from the reversible dissociation of water (Δ[H+]H2O) and H2CO3 (Δ[H+]H2CO3). In the equilibrium system H2O–(CO2)W−CaCO3–NaH2PO4, at low initial CO2 concentrations (< 3.39 × 10–5 mmol·L–1), the majority of protons (Δ[H+]H2PO4) originate from the H2PO4 dissociation. Conversely, with increased initial CO2 con centrations, the dissociation of H2CO3 (Δ[H+]H2CO3) becomes the primary proton source. Experimental validation confirms the developed model’s accuracy.

References

1. Tenno, T., Uiga, K., Mashirin, A., Zekker, I. and Rikmann, E. Modeling closed equilibrium systems of H2O–dissolved CO2–solid CaCO3J. Phys. Chem. A., 2017, 121(16), 3094–3100.
https://doi.org/10.1021/acs.jpca.7b00237

2. Tenno, T., Rikmann, E., Zekker, I., Tenno, T., Daija, L. and Mashirin, A. Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas. Proc. Estonian Acad. Sci., 2016, 65(1), 68–77.
https://doi.org/10.3176/proc.2016.1.07

3. Tenno, T., Rikmann, E., Uiga, K., Zekker, I., Mashirin, A. and Tenno, T. A novel proton transfer model of closed equilibrium systems of H2O–CO2–CaCO3–NHXProc. Estonian Acad. Sci., 2018, 67(3), 260–270. 
https://doi.org/10.3176/proc.2018.3.04  

5. Tenno, T., Rikmann, E., Zekker, I. and Tenno, T. Modelling the solubility of sparingly soluble compounds depending on their particles size. Proc. Estonian Acad. Sci., 2018, 67(3), 300–302. 
https://doi.org/10.3176/proc.2018.3.10  

6. Uiga, K., Tenno, T., Zekker, I. and Tenno, T. Dissolution modeling and potentiometric measurements of the SrS–H2O–gas system at normal pressure and temperature at salt concentrations of 0.125–2.924 mM. J. Sulfur Chem., 2011, 32(2), 137–149. 
https://doi.org/10.1080/17415993.2011.551937   

7. Zekker, I., Tenno, T., Selberg, A. and Uiga, K. Dissolution modeling and experimental measurement of CaS-H2O binary system. Chinese J. Chem., 2011, 29(11), 2327–2336. 
https://doi.org/10.1002/cjoc.201180399  

8. Uiga, K., Rikmann, E., Zekker, I., Mashirin, A. and Tenno, T. Modelling and experimental measurement of the closed eq­ui­librium system of H2O–SrS. Proc. Estonian Acad. Sci., 2020, 69(4), 287–297. 
https://doi.org/10.3176/proc.2020.4.02  

9. Uiga, K., Rikmann, E., Zekker, I. and Tenno, T. Detection and dissolution of sparingly soluble CaS and SrS particles in aqueous media depending on their size distribution. Proc. Estonian Acad. Sci., 2020, 69(4), 323–330. 
https://doi.org/10.3176/proc.2020.4.07  

10. Mandel, A., Zekker, I., Jaagura, M. and Tenno, T. Enhancement of anoxic phosphorus uptake of denitrifying phosphorus removal process by biomass adaption. Int. J. Environ. Sci. Technol., 2019, 16(10), 5965–5978. 
https://doi.org/10.1007/s13762-018-02194-2  

11. Zekker, I., Rikmann, E., Tenno, T., Kroon, K., Seiman, A., Loorits, L. et al. Start-up of low-temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ. Technol., 2014, 36(2), 214–225. 
https://doi.org/10.1080/09593 330.2014.941946  

12. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A. et al. Biogeochemistry of landfill leachate plumes. Appl. Geochem., 2001, 16(7–8), 659–718. 
https://doi.org/10.1016/S0883-2927(00)00082-2  

13. Tatsi, A. A. and Zouboulis, A. I. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res., 2002, 6(3), 207–219.
https://doi.org/10.1016/S1093-0191(01)00052-1

14. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A. and Christensen, T. H. Present and long-term composition of MSW landfill leachate: a review. Crit. Rev. Environ. Sci. Tech., 2002, 32(4), 297–336.  
https://doi.org/10.1080/10643380290813462

15. Rajagopal, R., Massé, D. I. and Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol., 2013, 143, 632–641.
https://doi.org/10.1016/j.biortech.2013.06.030

16. Zekker, I., Rikmann, E., Mandel, A., Kroon, K., Seiman, A., Mihkelson, J. et al. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests. Environ. Technol., 2016, 37(15), 1933–1946.
https://doi.org/10.1080/09593330.2015.1135995

17. Berends, D. H. J. G., Salem, S., van der Roest, H. F. and van Loosdrecht, M. C. M. Boosting nitrification with the BABE technology. Water Sci. Technol., 2005, 52(4), 63–70. 
https://doi.org/10.2166/wst.2005.0088

18. Stillinger, F. H. Proton Transfer Reactions and Kinetics in Water. In Theoretical Chemistry: Advances and Perspectives3. Academic Press, New York, San Francisco, London, 1978.
https://doi.org/10.1016/B978-0-12-681903-8.50011-4

19. Zumdahl, S. S. Chemical Principles. 2nd ed. D.C. Heath, Lexington, MA, 1995.

20. Chang, R. Physical Chemistry with Applications to Biological Systems. 2nd ed. Macmillan Publishing, New York, 1981.

21. Pocker, Y. and Bjorkquist, D. W. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in water and water-d2. Acid-base and metal ion catalysis. J. Am. Chem. Soc., 1977, 99(20), 6537–6543.
https://doi.org/10.1021/ja00462a012

22. Segal, B. G. Chemistry, Experiment and Theory. 2nd ed. John Wiley & Sons, New York, 1989, 363–365.

23. Skoog, D. A., West, D. M. and Holler, F. J. Fundamentals of Analytical Chemistry. 6th ed. Saunders College Publishing, Fort Worth, Tex, 1992. 

24. Dean, J. A. Lange’s Handbook of Chemistry. McGraw-Hill, New York, 1992.

25. Brown, T. L. and LeMay, H. E., Jr. Chemistry: the Central Science. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

26. Zekker, I., Rikmann, E., Kroon, K., Mandel, A., Mihkelson, J., Tenno, T. et al.  Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial inter­mediate nitric oxide. Int. J. Environ. Sci. Technol., 2017, 14, 2343–2356. 
https://doi.org/10.1007/s13762-017-1321-3  

27. Zekker, I., Rikmann, E., Oja, J., Anslan, S., Borzyszkowska, A. F., Zielińska-Jurek, A. et al. The selective salinity and hydrazine parameters for the start-up of non-anammox-specific biomass SBR. Int. J. Environ. Sci. Technol., 2023, 20, 12597–12610.
https://doi.org/10.1007/s13762-023-05055-9

28. Zekker, I., Rikmann, E., Tenno, T., Loorits, L., Kroon, K., Fritze, H. et al. Nitric oxide for anammox recovery in a nitrite-inhibited deammonification system. Environ. Technol., 2015, 36(19), 2477–2478.
https://doi.org/10.1080/09593330.2015.1034791

Back to Issue