ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Life cycle assessment of laboratory-scale chitosan production: comparison of high-pressure processing-assisted and conventional methods; pp. 1–14
PDF | https://doi.org/10.3176/proc.2025.1.01

Authors
Bashir Bashiri, Ana Cristina De Aguiar Saldanha Pinheiro, Silvia Tappi, Pietro Rocculi, Aleksei Kaleda, Raivo Vilu
Abstract

Chitosan is in high demand due to its wide range of applications, resulting in a reliable market. Conventional chemical extraction methods of chitosan are harsh, require strong acids and bases, and produce toxic waste products. High-pressure processing (HPP)-assisted chemical extraction of chitosan has the potential to result in a higher production yield. It is crucial to evaluate the environmental performance of this method. This paper presents a comprehensive comparative analysis of chitosan production methods from an environmental perspective, focusing on HPP-assisted and conventional techniques. Employing life cycle assessment (LCA) methodologies, the study evaluates the environmental footprints of conventional and HPP-assisted chitosan production processes. Results reveal that HPP-assisted production exhibits superior environmental performance, particularly in reducing climate change impact by 64% compared to conventional methods. Sensitivity and scenario analyses confirm the robustness of findings, considering changes in electricity production regions and alternative characterization methods. Uncertainty analysis indicates moderate uncertainty levels, affirming data reliability. The study concludes that HPP-assisted chitosan production offers a more sustainable approach with lower environmental footprints across various endpoints. These findings provide valuable guidance for stakeholders in the chitosan industry to enhance sustainability practices and minimize environmental impacts.

References

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H. et al. 2021. Chitosan: an overview of its properties and applications. Polymers13(19), 3256. 
https://doi.org/10.3390/POLYM13193256  

Bashiri, B., Cropotova, J., Kvangarsnes, K., Gavrilova, O. and Vilu, R. 2024. Environmental and economic life cycle assessment of enzymatic hydrolysis-based fish protein and oil extraction. Resources13(5), 61. 
https://doi.org/10.3390/RESOURCES13050061  

Bulle, C., Margni, M., Patouillard, L., Boulay, A.-M., Bourgault, G., De Bruille, V. et al. 2019. IMPACT World+: a globally region­alized life cycle impact assessment method. Int. J. Life Cycle Assess.24(9), 1653–1674. 
https://doi.org/10.1007/s11367-019-01583-0  

Cacace, F., Bottani, E., Rizzi, A. and Vignali, G. 2020. Evaluation of the economic and environmental sustainability of high pressure processing of foods. Innov. Food Sci. Emerg. Technol.60, 102281. 
https://doi.org/10.1016/J.IFSET.2019.102281  

Casadidio, C., Peregrina, D. V., Gigliobianco, M. R., Deng, S., Censi, R. and Di Martino, P. 2019. Chitin and chitosans: char­acteristics, eco-friendly processes, and applications in cosmetic science. Mar. Drugs17(6), 369. 
https://doi.org/10.3390/MD17060369  

Durkin, C. A., Mock, T. and Armbrust, E. V. 2009. Chitin in diatoms and its association with the cell wall. Eukaryot. Cell8(7), 1038–1050. 
https://doi.org/10.1128/ec.00079-09  

Fraterrigo Garofalo, S., Cavallini, N., Demichelis, F., Savorani, F., Mancini, G., Fino, D. et al. 2023. From tuna viscera to added-value products: a circular approach for fish-waste recovery by green enzymatic hydrolysis. Food Bioprod. Process.137, 155–167. 
https://doi.org/10.1016/J.FBP.2022.11.006  

Gavrilova, O., Vilu, R. and Vallner, L. 2010. A life cycle environmental impact assessment of oil shale produced and consumed in Estonia. Resour. Conserv. Recycl.55(2), 232–245. 
https://doi.org/10.1016/J.RESCONREC.2010.09.013  

Ghamkhar, R., Boxman, S. E., Main, K. L., Zhang, Q., Trotz, M. A. and Hicks, A. 2021. Life cycle assessment of aquaculture systems: does burden shifting occur with an increase in production intensity? Aquac. Eng.92, 102130. 
https://doi.org/10.1016/J.AQUAENG.2020.102130  

Harugade, A., Sherje, A. P. and Pethe, A. 2023. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym.191, 105634. 
https://doi.org/10.1016/j.reactfunctpolym.2023.105634  

Huang, Y.-L. and Tsai, Y.-H. 2020. Extraction of chitosan from squid pen waste by high hydrostatic pressure: effects on physicochemical properties and antioxidant activities of chitosan. Int. J. Biol. Macromol.160, 677–687. 
https://doi.org/10.1016/j.ijbiomac.2020.05.252  

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M. et al. 2017. ReCiPe2016: a harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess.22, 138–147. 
https://doi.org/10.1007/s11367-016-1246-y  

IEA. Estonia.
https://www.iea.org/countries/estonia (accessed 2024-01-22).

Jiménez-Gómez, C. P. and Cecilia, J. A. 2020. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules25(17), 3981. 
https://doi.org/10.3390/MOLECULES25173981  

Kevrekidis, K. and Thessalou-Legaki, M. 2011. Population dynamics of Melicertus kerathurus (Decapoda: Penaeidae) in Thermaikos Gulf (N. Aegean Sea). Fish. Res.107(1–3), 46–58. 
https://doi.org/10.1016/J.FISHRES.2010.10.006  

Kou, S. G., Peters, L. M. and Mucalo, M. R. 2021. Chitosan: a re­view of sources and preparation methods. Int. J. Biol. Macromol.169, 85–94. 
https://doi.org/10.1016/J.IJBIOMAC.2020.12.005  

Li, S., Zhang, R., Lei, D., Huang, Y., Cheng, S., Zhu, Z. et al. 2021. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci. Technol.109, 1–15. 
https://doi.org/10.1016/J.TIFS.2021.01.017  

Mahmood, A., Varabuntoonvit, V., Mungkalasiri, J., Silalertruksa, T. and Gheewala, S. H. 2022. A tier-wise method for evaluating uncertainty in life cycle assessment. Sustainability14(20), 13400. 
https://doi.org/10.3390/SU142013400  

Mannozzi, C., Foligni, R., Mozzon, M., Aquilanti, L., Cesaro, C., Isidoro, N. et al. 2023. Nonthermal technologies affecting techno-functional properties of edible insect-derived proteins, lipids, and chitin: a literature review. Innov. Food Sci. Emerg. Technol.88, 103453. 
https://doi.org/10.1016/J.IFSET.2023.103453  

Mekonnen, M. M., Gerbens-Leenes, P. W. and Hoekstra, A. Y. 2015. The consumptive water footprint of electricity and heat: a global assessment. Environ. Sci.: Water Res. Technol.1, 285–297. 
https://doi.org/10.1039/c5ew00026b  

Meramo-Hurtado, S., Alarcón-Suesca, C. and González-Delgado, Á. D. 2020. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J. Clean. Prod.248, 119285. 
https://doi.org/10.1016/J.JCLEPRO.2019.119285  

Muñoz, I., Rodríguez, C., Gillet, D. and Moerschbacher, B. M. 2018. Life cycle assessment of chitosan production in India and Europe. Int. J. Life Cycle Assess.23(5), 1151–1160. 
https://doi.org/10.1007/s11367-017-1290-2  

Pacana, A., Siwiec, D., Bednárová, L. and Petrovský, J. 2023. Improving the process of product design in a phase of life cycle assessment (LCA). Processes11(9), 2579. 
https://doi.org/10.3390/PR11092579  

Pellis, A., Guebitz, G. M. and Nyanhongo, G. S. 2022. Chitosan: sources, processing and modification techniques. Gels8(7), 393. https://doi.org/10.3390/GELS8070393 

Piekarska, K., Sikora, M., Owczarek, M., Jóźwik-Pruska, J. and Wiśniewska-Wrona, M. 2023. Chitin and chitosan as polymers of the future – obtaining, modification, life cycle assessment and main directions of application. Polymers15(4), 793. 
https://doi.org/10.3390/POLYM15040793  

Riofrio, A., Alcivar, T. and Baykara, H. 2021. Environmental and economic viability of chitosan production in Guayas-Ecuador: a robust investment and life cycle analysis. ACS Omega6(36), 23038–23051. 
https://doi.org/10.1021/acsomega.1c01672  

Ruiz-Salmón, I., Laso, J., Margallo, M., Villanueva-Rey, P., Rodríguez, E., Quinteiro, P. et al. 2021. Life cycle assessment of fish and seafood processed products – a review of methodologies and new challenges. Sci. Total Environ.761, 144094. 
https://doi.org/10.1016/J.SCITOTENV.2020.144094  

Saerens, W., Smetana, S., Van Campenhout, L., Lammers, V. and Heinz, V. 2021. Life cycle assessment of burger patties produced with extruded meat substitutes. J. Clean. Prod.306, 127177. 
https://doi.org/10.1016/J.JCLEPRO.2021.127177  

Silva, M. B. D. O., de Oliveira, S. A. and Rosa, D. S. 2024. Comparative study on microwave-assisted and conventional chitosan production from shrimp shell: process optimization, characterization, and environmental impacts. J. Clean. Prod.440, 140726. 
https://doi.org/10.1016/J.JCLEPRO.2024.140726  

Summa, D., Turolla, E., Lanzoni, M., Tamisari, E., Castaldelli, G. and Tamburini, E. 2023. Life cycle assessment (LCA) of two different oyster (Crassostrea gigas) farming strategies in the Sacca di Goro, Northern Adriatic Sea, Italy. Resources12(6), 62. 
https://doi.org/10.3390/RESOURCES12060062  

Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T. et al. 2022. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep.12, 6613. 
https://doi.org/10.1038/s41598-022-10423-5  

Valsasina, L., Pizzol, M., Smetana, S., Georget, E., Mathys, A. and Heinz, V. 2017. Life cycle assessment of emerging technologies: the case of milk ultra-high pressure homogenisation. J. Clean. Prod.142(P4), 2209–2217. 
https://doi.org/10.1016/J.JCLEPRO.2016.11.059   

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. and Weidema, B. 2016. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess.21(9), 1218–1230. 
https://doi.org/10.1007/s11367-016-1087-8

Back to Issue