The recent appearance of partial power converters has shown their potential to significantly improve the efficiency and power density of power electronic systems. However, their feasibility in different applications is not sufficiently studied. This paper examines a partial power converter based on the dual active bridge topology regarding its feasibility and performance for battery integration into the cells of a modular multilevel converter that feeds particle accelerator magnets. The simulation results prove that the given partial power converter can reject gridfrequency ripple on the battery side and control current with sufficient dynamics. Its comparison with typical DC-DC topologies reveals its acceptable cost, high efficiency, and power density. The findings are based on the numerical simulation in the MATLAB/Simulink environment and virtual prototyping based on available offtheshelf components.
1. Brüning, O., Seryi, A. and Verdú-Andrés, S. Electron-hadron colliders: EIC, LHeC and FCC-eh. Front. Phys., 2022, 10, 88647310, 1–10.
https://doi.org/10.3389/fphy.2022.886473
2. Mangano, M. L. (ed.). Physics at the FCC-hh, a 100 TeV pp collider. In CERN Yellow Reports: Monographs. CERN, 2017, 3.
https://doi.org/10.23731/CYRM-2017-003
3. Abada, A., Abbrescia, M., AbdusSalam, S. S., Abdyukhanov, I., Abelleira Fernandez, J., Abramov, A. et al. FCC-ee: the lepton collider. Eur. Phys. J. Spec. Top., 2019, 228(2), 261–623.
https://doi.org/10.1140/epjst/e2019-900045-4
4. Blondel, A. and Janot, P. FCC-ee overview: new opportunities create new challenges. Eur. Phys. J. Plus, 2022, 137(1), 92, 1–19.
https://doi.org/10.1140/epjp/s13360-021-02154-9
5. Slettbakk, T. E. Development of a power quality conditioning system for particle accelerators. BSc thesis. Norwegian University of Science and Technology, Norway, 2018.
https://cds.cern.ch/record/2655157
6. Bouteille, J. F. Power converters for cycling machines. In Proceedings of the CAS-CERN Accelerator School: Power Converters, Baden, Switzerland, 7–14 May 2014. CERN, 2015, 171–195.
https://doi.org/10.5170/CERN-2015-003.171
7. Burnet, J.-P. Requirements for power converters. In Proceedings of the CAS-CERN Accelerator School: Power Converters, Baden, Switzerland, 7–14 May 2014. CERN, 2015, 1–14.
https://doi.org/10.5170/CERN-2015-003.1
8. Kahle, K. Power converters and power quality. In Proceedings of the CAS-CERN Accelerator School: Power Converters, Baden, Switzerland, 7–14 May 2014. CERN, 2015, 57–82.
https://doi.org/10.5170/CERN-2015-003.57
9. Höhn, T. M. Conceptual power system design for the future circular collider. PhD thesis. TU Graz, Austria, 2022.
https://doi.org/10.3217/MVFD9-7J318
10. Martins, C. Photovoltaic DC injection. Presented at the I FAST WP11 Annual Meeting, ESS, Lund, Sweden, 3 May 2022.
https://indico.cern.ch/event/1157482
11. Seidel, M. Energy-efficient particle accelerators for research. In Oxford Research Encyclopedia of Physics.
https://doi.org/10.1093/acrefore/9780190871994.013.137 (accessed 2024-10-15).
12. Colmenero, M., Blanquez, F. R. and Blasco-Gimenez, R. Design concepts for medium voltage DC networks supplying the future circular collider (FCC). In 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 7–9 September 2022. IEEE, 2022, 1–11. https://ieeexplore.ieee.org/document/9907266
13. Hohn, T. Advanced power-quality technologies for future circular collider (FCC). Presented at the 4th Annual Meeting of the Future Circular Collider Study, Amsterdam, The Netherlands, 9–13 April 2018.
https://indico.cern.ch/event/656491/contribu tions/2915665/
14. Yeganeh, M. S. O., Davari, P., Chub, A., Mijatovic, N., Dragičević, T. and Blaabjerg, F. A single-phase reduced component count asymmetrical multilevel inverter topology. IEEE J. Emerg. Sel. Topics Power Electron., 2021, 9(6), 6780–6790.
https://doi.org/10.1109/JESTPE.2021.3066396
15. Colmenero, M., Blanquez, F. R. and Blasco-Gimenez, R. DC powering solutions for the future circular collider: converter topologies, protection, and control. IEEE Open J. Ind. Electron., 2023, 4, 694–708.
https://doi.org/10.1109/OJIES.2023.3336981
16. Moratalla, M. C., Vidal-Albalate, R., Delgado, F. R. B. and Blasco-Gimenez, R. Fault-tolerant strategies in MMC-based high power magnet supply for particle accelerator. Math. Comput. Simul., 2024, 224(P A), 63–79.
https://doi.org/10.1016/j.matcom. 2023.07.014
17. Chen, Q., Li, R. and Cai, X. Analysis and fault control of hybrid modular multilevel converter with integrated battery energy storage system. IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 64–78.
https://doi.org/10.1109/JESTPE.2016.2623672
18. Barresi, M., Ferri, E. and Piegari, L. An MMC-based fully modular ultra-fast charging station integrating a battery energy storage system. In 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG), Birmingham, United Kingdom, 29 June–1 July 2022. IEEE, 2022, 1–8.
https://doi.org/10.1109/CPE-POWERENG 54966.2022.9880885
19. Ma, Y., Xiao, J., Lin, H. and Wang, Z. A novel battery integration method of modular multilevel converter with battery energy storage system for capacitor voltage ripple reduction. IEEE Trans. Ind. Electron., 2021, 68(12), 12250–12261.
https://doi.org/10.1109/TIE.2020.3044780
20. Abada, A., Abbrescia, M., AbdusSalam, S. S., Abdyukhanov, I., Abelleira Fernandez, J., Abramov, A. et al. FCC-hh: the hadron collider. Eur. Phys. J. Spec. Top., 2019, 228(4), 755–1107.
https://doi.org/10.1140/epjst/e2019-900087-0
21. Mohseni, P., Husev, O., Vinnikov, D., Strzelecki, R., Romero-Cadaval, E. and Tokarski, I. Battery technologies in electric vehicles: improvements in electric battery packs. IEEE Ind. Electron. Mag., 2023, 17(4), 55–65.
https://doi.org/10.1109/mie.2023.3252265
22. Stynski, S., Luo, W., Chub, A., Franquelo, L. G., Malinowski, M. and Vinnikov, D. Utility-scale energy storage systems: converters and control. IEEE Ind. Electron. Mag., 2020, 14(4), 32–52.
https://doi.org/10.1109/MIE.2020.3011655
23. Schroeder, M., Henninger, S., Jaeger, J., Raš, A., Rubenbauer, H. and Leu, H. Integration of batteries into a modular multilevel converter. In 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013. IEEE, 2013, 1–12.
https://doi.org/10.1109/EPE.2013.6634328
24. Wang, Z., Lin, H., Ma, Y. and Wang, T. A prototype of modular multilevel converter with integrated battery energy storage. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017. IEEE, 2017, 434–439.
https://doi.org/10.1109/APEC.2017.7930730
25. Soong, T. and Lehn, P. W. Evaluation of emerging modular multilevel converters for BESS applications. IEEE Trans. Power Deliv., 2014, 29(5), 2086–2094.
https://doi.org/10.1109/TPWRD.2014.2341181
26. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M. and Barbosa, P. Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron., 2015, 30(1), 37–53.
https://doi.org/10.1109/TPEL.2014.2309937
27. Anzola, J., Aizpuru, I., Romero, A. A., Loiti, A. A., Lopez-Erauskin, R. and Artal-Sevil, J. S. Review of architectures based on partial power processing for DC-DC applications. IEEE Access, 2020, 8, 103405–103418.
https://doi.org/10.1109/ACCESS. 2020.2999062
28. Chub, A., Hassanpour, N., Yadav, N., Jalakas, T., Blinov, A. and Vinnikov, D. Analysis of design requirements and optimization possibilities of partial power converter for photovoltaic string applications in DC microgrids. IEEE Access, 2024, 12, 14605–14619.
https://doi.org/10.1109/ACCESS.2024.3354375
29. Hassanpour, N., Chub, A., Blinov, A. and Vinnikov, D. Soft-switching bidirectional step-up/down partial power converter with reduced components stress. IEEE Trans. Power Electron., 2023, 38(11), 14166–14177.
https://doi.org/10.1109/TPEL.2023.3289061
30. dos Santos, N. G. F., Zientarski, J. R. R. and da Silva Martins, M. L. A review of series-connected partial power converters for DC–DC applications. IEEE J. Emerg. Sel. Topics Power Electron., 2022, 10(6), 7825–7838.
https://doi.org/10.1109/JESTPE.2021.3082869
31. Artal-Sevil, J. S., Anzola, J., Ballestín-Bernad, V. and Bernal-Agustín, J. L. Analysis and implementation of different non-isolated partial-power processing architectures based on the Cuk converter. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 7–9 September 2022. IEEE, 2022, 1–10.
32. Anzola, J., Aizpuru, I., Arruti, A., Artal-Sevil, J. S. and Bernal, C. Demystifying non-isolated DC-DC topologies on partial power processing architectures. Electronics, 2022, 11(3), 480.
https://doi.org/10.3390/electronics11030480
33. Purgat, P., Shekhar, A., Qin, Z. and Bauer, P. Low-voltage dc system building blocks: integrated power flow control and short circuit protection. IEEE Ind. Electron. Mag., 2023 17(1), 6–20.
https://doi.org/10.1109/MIE.2021.3106275
34. Purgat, P., van der Blij, N. H., Qin, Z. and Bauer, P. Partially rated power flow control converter modeling for low-voltage DC grids. IEEE J. Emerg. Sel. Topics Power Electron., 2020, 8(3), 2430–2444.
https://doi.org/10.1109/JESTPE.2019.2915166
35. Müller, N., Kouro, S., Zanchetta, P. and Wheeler, P. Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants. In 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018. IEEE, 2018, 892–897.
https://doi.org/10.1109/ICIT.2018.8352296
36. Mishra, S., Tamballa, S., Pallantala, M., Raju, S. and Mohan, N. Cascaded dual-active bridge cell based partial power converter for battery emulation. In 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, Canada, 17–20 June 2019. IEEE, 2019, 1–7.
https://doi.org/10.1109/COMPEL.2019.8769712
37. Iyer, V. M., Gulur, S., Bhattacharya, S. and Ramabhadran, R. A partial power converter interface for battery energy storage integration with a DC microgrid. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September – 3 October 2019. IEEE, 2019, 5783–5790.
https://doi.org/10.1109/ECCE.2019.8912590
38. Mira, M. C., Zhang, Z., Jørgensen, K. L. and Andersen, M. A. E. Fractional charging converter with high efficiency and low cost for electrochemical energy storage devices. IEEE Trans. Ind. Appl., 2019, 55(6), 7461–7470.
https://doi.org/10.1109/TIA. 2019.2921295
39. Viinamäki, J., Jokipii, J. and Suntio, T. Improving double-line-frequency voltage ripple rejection capability of DC/DC converter in grid connected two-stage PV inverter using DC-link voltage feedforward. In 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. IEEE, 2016, 1–10.
https://doi.org/10.1109/EPE.2016.7695539
40. Hu, X., Shao, W., Cheng, Y., Zhang, C. and Han, Y. Research on ADRC controller of bidirectional DC-DC converter for MMC-BESS. Energy Rep., 2023, 9, 1627–1636.
https://doi.org/10.1016/j.egyr.2023.04.175
41. Zhao, X., Zhang, L., Born, R. and Lai, J.-S. Solution of input double-line frequency ripple rejection for high-efficiency high-power density string inverter in photovoltaic application. In 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016. IEEE, 2016, 1148–1154.
https://doi.org/10.1109/APEC.2016.7468014
42. Yang, S., Zhuang, F., Wang, Y., Tang, Y. and Wang, P. Low-frequency voltage ripple suppression for MMCs with split-capacitor submodules. IEEE Trans. Power Electron., 2024, 39(1), 483–492.
https://doi.org/10.1109/TPEL.2023.3327036
43. Liu, C., Wang, J., Colombage, K., Gould, C., Sen, B. and Stone, D. Current ripple reduction in 4kW LLC resonant converter based battery charger for electric vehicles. In 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. IEEE, 2015, 6014–6021.
https://doi.org/10.1109/ECCE.2015.7310503
44. Fawzi, M., Abdelsalam, I., Aboushady, A. A. and Abdel Maksoud, S. A. A modified phase shift control of the dual active bridge-based modular power electronic transformer to minimize the LVdc side voltage ripples under unbalanced load conditions. IEEE Access, 2022, 10, 81309–81322.
https://doi.org/10.1109/ACCESS.2022.3195941
45. Vasiladiotis, M. and Rufer, A. Analysis and control of modular multilevel converters with integrated battery energy storage. IEEE Trans Power Electron., 2015, 30(1), 163–175.
https://doi.org/10.1109/TPEL.2014.2303297
46. Shao, S., Chen, L., Shan, Z., Gao, F., Chen, H. and Sha, D. Modeling and advanced control of dual-active-bridge DC–DC converters: a review. IEEE Trans. Power Electron., 2022, 37(2), 1524–1547.
https://doi.org/10.1109/TPEL.2021.3108157
47. Bayat, H. and Yazdani, A. A hybrid MMC-based photovoltaic and battery energy storage system. IEEE Power Energy Technol. Syst. J., 2019, 6(1), 32–40.
https://doi.org/10.1109/JPETS.2019.2892418
48. Zhao, B., Song, Q., Liu, W. and Sun, Y. Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron., 2014, 29(8), 4091–4106.
https://doi.org/10.1109/TPEL.2013.2289913
49. Jiang, J., Zhang, B., Li, Z., Ranjan, P., Chen, J. and Zhang, C. Partial discharge features for power electronic transformers under high-frequency pulse voltage. IEEE Trans. Plasma Sci., 2021, 49(2), 845–853.
https://doi.org/10.1109/TPS.2021.3053960
50. Liivik, E., Vinnikov, D., Chub, A., Shen, Y., Wang, H. and Blaabjerg, F. Reliability study of input side capacitors in impedance-source PV microconverters. In IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. IEEE, 2019, 5026–5032.
https://doi.org/10.1109/IECON.2019.8927173
51. Merlin, M. M. C. and Green, T. C. Cell capacitor sizing in multilevel converters: cases of the modular multilevel converter and alternate arm converter. IET Power Electron., 2015, 8(3), 350–360.
https://doi.org/10.1049/iet-pel.2014.0328
52. Gitau, M. N., Ebersohn, G. and Kettleborough, J. G. Power processor for interfacing battery storage system to 725V DC bus. Energy Convers. Manag., 2007, 48(3), 871–881.
https://doi.org/10.1016/j.enconman.2006.08.019
53. Niinemägi, J. Simulink simulation models of three different power converters. TalTech Data Repository, 2023.
https://doi.org/10.48726/ws4hc-q3b07
54. Hegazy, O., Mierlo, J. V. and Lataire, P. Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles. IEEE Trans. Power Electron., 2012, 27(11), 4445–4458.
https://doi.org/10.1109/TPEL.2012.2183148