ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Novel droop control strategy for indirect battery management in DC nanogrids; pp. 345–355
PDF | https://doi.org/10.3176/proc.2024.4.03

Authors
Indrek Roasto, Andrei Blinov, Dmitri Vinnikov
Abstract

This paper proposes a novel droop control strategy for indirect battery management in DC nanogrids. Droop control as a decentralized control method is a well­-recognized method to provide effective power sharing and voltage stability among sources and loads in the DC nanogrid without additional communication links. While most existing droop control methods focus on adjusting each individual battery droop curve directly, the proposed method manipulates the droop curve of the active front­-end converter, which connects the nanogrid to the main grid to indirectly influence the state of charge of the battery. The method employs a piecewise linear droop curve with a movable inflection point, which can be adjusted according to different scenarios. The effectiveness of the proposed method is evaluated through simulations using real data from a residential house with rooftop PV panels. The results show that the proposed method not only improves battery utilization but also increases renewable energy self­-consumption.

References

1. Lee, P.-W., Lee, Y.-S. and Lin, B.-T. Power distribution systems for future homes. In Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems (PEDS’99), Hong Kong, China, 27–29 July 1999. IEEE, 1999, 2, 1140–1146. 
https://doi.org/10.1109/peds.1999.792869  

2. Ganesan, S. I., Pattabiraman, D., Govindarajan, R. K., Rajan, M. and Nagamani, C. Control scheme for a bidirectional converter in a self-sustaining low-voltage DC nanogrid. IEEE Trans. Ind. Electron., 2015, 62(10), 6317–6326. 
https://doi.org/10.1109/TIE.2015.2424192  

3. Gerber, D. L., Vossos, V., Feng, W., Marnay, C., Nordman, B. and Brown, R. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings. Appl. Energy, 2018, 210, 1167–1187. 
https://doi.org/10.1016/j.apenergy.2017.05.179  

4. Boroyevich, D., Cvetković, I., Dong, D., Burgos, R., Wang, F. and Lee, F. Future electronic power distribution systems a contemplative view. In 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010. IEEE, 2010, 1369–1380. 
https://doi.org/10.1109/OPTIM.2010.5510477  

5. Nguyen, T. L., Guerrero, J. M. and Griepentrog, G. A self-sustained and flexible control strategy for islanded DC nanogrids without communication links. IEEE J. Emerg. Sel. Topics Power Electron., 2020, 8(1), 877–892. 
https://doi.org/10.1109/JESTPE.2019.2894564  

6. Zhang, W., Lee, F. C. and Huang, P.-Y. Energy management system control and experiment for future home. In IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014. IEEE, 2014, 3317–3324. 
https://doi.org/10.1109/ECCE.2014.6953851  

7. Lu, X., Sun, K., Guerrero, J. M., Vasquez, J. C. and Huang, L. State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications. IEEE Trans. Ind. Electron., 2014, 61(6), 2804–2815. 
https://doi.org/10.1109/TIE.2013.2279374  

8. Su, J., Li, K., Li, Y., Xing, C. and Yu, J. A novel state-of-charge-based droop control for battery energy storage systems to support coordinated operation of DC microgrids. IEEE J. Emerg. Sel. Topics Power Electron., 2023, 11(1), 312–324. 
https://doi.org/10.1109/JESTPE.2022.3149398  

9. Narayan, N., Mackay, L., Malik, B. O., Popovic-Gerber, J., Qin, Z., Bauer, P. et al. Decentralized control-scheme for DC-interconnected solar home systems for rural electrification. In IEEE 3rd International Conference on DC Microgrids (ICDCM), Matsue, Japan, 20–23 May 2019. IEEE, 2019, 1–6. 
https://doi.org/10.1109/ICDCM45535.2019.9232831  

10. Song, Q. and Chen, J. A decentralized energy manage­ment strategy for a battery/supercapacitor hybrid energy storage system in autonomous DC microgrid. In IEEE 27th International Symposium on Industrial Electronics (ISIE)Cairns, QLD, Australia, 13–15 June 2018. IEEE, 19–24. 
https://doi.org/10.1109/ISIE.2018.8433728  

11. Ito, Y., Zhongqing, Y. and Akagi, H. DC microgrid based distribution power generation system. In The 4th International Power Electronics and Motion Control Conference (IPMC), Xi’an, China, 14–16 August 2004. IEEE, 2004, 2352–2360.

12. Hailu, T., Mackay, L., Ramirez-Elizondo, L., Gu, J. and Ferreira, J. A. Voltage weak DC microgrid. In IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015. IEEE, 2015, 138–143.
https://doi.org/10.1109/ICDCM.2015.7152025

13. Lu, X., Guerrero, J. M., Sun, K. and Vasquez, J. C. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron., 2014, 29(4), 1800–1812. 
https://doi.org/10.1109/TPEL.2013.2266419  

14. Zeng, W., Sun, M., Chen, B., He, W., Xiong, H. and Xiong, J. Stability analysis of energy routing system considering droop control. In IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2)Changsha, China, 8–10 November 2019. IEEE, 2019, 1024–1029. 
https://doi.org/10.1109/EI247390.2019.9062170  

15. Liu, G., Mattavelli, P. and Saggini, S. Design of droop controllers for converters in DC microgrids towards reducing bus capacitance acknowledgments. In 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018. IEEE, 2018, P1–P9.

16. Su, J., Li, K., Li, Y., Xing, C. and Yu, J. A novel state-of-charge-based droop control for battery energy storage systems to support coordinated operation of DC microgrids. IEEE J. Emerg. Sel. Topics Power Electron., 2023, 11(1), 312–324. 
https://doi.org/10.1109/JESTPE.2022.3149398  

17. Chen, F., Burgos, R., Boroyevich, D., Vasquez, J. C. and Guerrero, J. M. Investigation of nonlinear droop control in DC power distribution systems: load sharing, voltage regu­lation, efficiency, and stability. IEEE Trans. Power Electron., 2019, 34(10), 9407–9421. 
https://doi.org/10.1109/TPEL.2019.2893686  

18. Narayan, N., Mackay, L., Malik, B. O., Popovic-Gerber, J., Qin, Z., Bauer, P. et al. Decentralized control-scheme for DC-interconnected solar home systems for rural electrification. In IEEE Third International Conference on DC Microgrids (ICDCM)Matsue, Japan, 20–23 May 2019. IEEE, 2019, 1–6. 
https://doi.org/10.1109/ICDCM45535.2019.9232831  

19. Royal Dutch Standardization Institute (NEN). NL: DC Installations for Low Voltage, Standard NPR 9090:2018.

Back to Issue