Thermodynamic behaviour of the low-temperature proton exchange membrane fuel cell (PEM FC) was under investigation. Different types of behaviour were observed depending on the thermal treatment of the FC. In the case of the relatively slow heating of reactant gases, the thermodynamic behaviour of the FC resembles the behaviour of the reversible FC, with an inverse proportionality between the open-circuit voltage and temperature during the heating-cooling cycle. In contrast, heating of the whole FC frame leads to predominantly direct proportionality during the heating-cooling cycle and, in addition, to hysteresis.
1. Kovács, K. L., Marót, G. and Rákhely, G. A novel approach for biohydrogen production. Int. J. Hydrog. Energy, 2006, 31(11), 1460–1468.
https://doi.org/10.1016/j.ijhydene.2006.06.011
2. Ritchie, H., Rosado, P. and Roser, M. Energy. Our World in Data, 2023.
https://ourworldindata.org/energy
3. Yong-Qiang, X., Chun-Hui, L. and Jin-Chuan, F. The electrochemical thermodynamics for chemical reactions in dispersed cells. J. Colloid Interface Sci., 1999, 217(1), 107–110.
https://doi.org/10.1006/jcis.1999.6221
4. Musikajaroen, S., Polin, S., Sattayaporn, S., Jindata, W., Saenrang, W., Kidkhunthod, P. et al. Photoenhanced water electrolysis in separate O2 and H2 cells using pseudocapacitive electrodes. ACS Omega, 2021, 6(30), 19647–19655.
https://doi.org/10.1021/acsomega.1c02305
5. LeRoy, R. L., Bowen, C. T. and Leroy, D. J. The thermodynamics of aqueous water electrolysis. J. Electrochem. Soc., 1980, 127(9), 1954.
https://doi.org/10.1149/1.2130044
6. EG&G Technical Services, Inc. Fuel Cell Handbook 2004.
https://www.netl.doe.gov/sites/default/files/netl-file/FCHand book7.pdf (accessed 2023-11-24).
7. Bidin, N., Azni, S. R., Abu Bakar, M. A., Johari, A. R. B., Abdul Munap, D. H. F., Salebi, M. F. et al. The effect of sunlight in hydrogen production from water electrolysis. Int. J. Hydrog. Energy, 2017, 42(1) 133–142.
https://doi.org/10.1016/j.ijhydene.2016.11.203
8. Pilatowsky, I., Romero, R. J., Isaza, C. A., Gamboa, S. A., Sebastian, P. J. and Rivera, W. Thermodynamics of fuel cells. In Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Green Energy and Technology. Springer, London, 2011, 25–36.
https://doi.org/10.1007/978-1-84996-028-1_2
9. Mitofsky, A. M. Direct Energy Conversion. Trine University, Angola, IN, 2018.
https://www.trine.edu/books/directenergy.aspx/
10. Khotseng, L. Fuel cell thermodynamics. In Thermodynamics and Energy Engineering (Vizureanu, P., ed.). IntechOpen, 2020.
https://doi.org/10.5772/intechopen.90141
11. Roy, A., Watson, S. and Infield, D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers. Int. J. Hydrog. Energy, 2006,31(14), 1964–1979.
http://dx.doi.org/10.1016/j.ijhydene.2006.01.018
12. H-TEC Education. Fuel Cells.
https://h-tec-education.com/fuel-cell-kits (accessed 2024-05-01).
13. Reimer, U., Lehnert, W., Holade, Y. and Kokoh, B. Irreversible losses in fuel cells. In Fuel Cells and Hydrogen: From Fundamentals to Applied Research (Hacker, V. and Mitsushima, S., eds). Elsevier, 2018, 15–40.
http://dx.doi.org/10.1016/B978-0-12-811459-9.00002-5
14. Haynes, C. Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J. Power Sources, 2001, 92(1–2), 199–203.
https://doi.org/10.1016/S0378-7753(00)00541-3
15. Winter, M. and Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev., 2004, 104(10), 4245–4270.
https://doi.org/10.1021/cr020730k