Common thyme (Thymus vulgaris L., Lamiaceae) is one of the most well-known plants in the world, widely used in medicine, culinary arts, and cosmetics. The aim of this study was to analyse the content and composition of essential oils (EO) obtained from the T. vulgaris commercial samples grown in Estonia and in various European countries. Gas chromatography was used to characterize the quality and diversity of chemotypes of the studied plant raw material of different origins. The samples of the T. vulgaris herb contained 3–28 mL/kg of EO, and in five samples it was below the European Pharmacopoeia (Ph. Eur.) requirement (minimum 12 mL/kg). In total, 44 EO compounds were identified in the essential oils of the studied T. vulgaris samples. Among them, five principal compounds were carvacrol (2.3–87.5%), thymol (0.9–71.2%), p-cymene (0.3–26.0%), γ-terpinene (0.1–16.1%), and (E)-β-caryophyllene (0.6–9.2%). It was concluded that the main compound of T. vulgaris EO (n = 37) was thymol with an average content of 41.1%. Monoterpenoids (90.5%) and sesquiterpenoids (5.7%) were the most dominating groups of terpenoids in the studied EO. Regarding the minimum and maximum content of key compounds in EO, none of the studied samples (n = 22) fully met the requirements of Ph. Eur. 11. The content of the four most important terpenoids (thymol, carvacrol, p-cymene, and γ-terpinene) in the EO of T. vulgaris does not change much from the beginning to the end of the flowering period. Correlations between the content of the most important (>2%) components (n = 14) of the studied EO (n = 37) showed a level >0.9 in several cases. Among seven studied chemotypes of T. vulgaris EO, five contained thymol as one of the main components.
1. Kim, M., Sowndhararajan, K. and Kim, S. The chemical composition and biological activities of essential oil from Korean native thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules, 2022, 27(13), 4251.
https://doi.org/10.3390/molecules27134251
2. Hammoudi Halat, D., Krayem, M., Khaled, S. and Younes, S. A focused insight into thyme: biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients, 2022, 14(10), 2104.
https://doi.org/10.3390/nu14102104
3. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F. and Morshedloo, M. R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod., 2019, 135, 311–320.
https://doi.org/10.1016/j.indcrop.2019.04.055
4. Nagoor Meeran, M. F., Javed, H., Al Taee, H., Azimullah, S. and Ojha, S. K. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol., 2017, 8, 380.
https://doi.org/10.3389/fphar.2017.00380
5. Council of Europe. European Pharmacopoeia. 11th ed. Strasbourg, 2022.
6. Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A. T. and Horhat, F. G. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life, 2014, 7(Spec. Iss. 3), 56–60.
7. Mahboubi, M., Heidarytabar, R., Mahdizadeh, E. and Hosseini, H. Antimicrobial activity and chemical composition of Thymus species and Zataria multifloraessential oils. Agric. Nat. Resour., 2017, 51(5), 395–401.
https://doi.org/10.1016/j.anres.2018.02.001
8. Šegvić Klarić, M., Kosalec, I., Mastelić, J., Piecková, E. and Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 2007, 44(1), 36–42.
https://doi.org/10.1111/j.1472-765X.2006.02032.x
9. El Yaagoubi, M., Mechqoq, H., El Hamdaoui, A., Jrv Mukku, V., El Mousadik, A., Msanda, F. et al. A review on Moroccan Thymus species: traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol., 2021, 278, 114205.
https://doi.org/10.1016/j.jep.2021.114205
10. Boukhatem, M. N., Darwish, N. H. E., Sudha, T., Bahlouli, S., Kellou, D., Benelmouffok, A. B. et al. In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing Thymus vulgaris (Lamiaceae) used for medicinal purposes in Algeria: a new source of carvacrol. Sci. Pharm., 2020, 88(3), 33.
https://doi.org/10.3390/scipharm88030033
11. Schmidt, E., Wanner, J., Hiiferl, M., Jirovetz, L., Buchbauer, G., Gochev, V. et al. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun., 2012, 7(8), 1095–1098.
https://doi.org/10.1177/1934578X1200700833
12. Galovičová, L., Borotová, P., Valková, V., Vukovic, N. L., Vukic, M., Štefániková, J. et al. Thymus vulgaris essential oil and its biological activity. Plants, 2021, 10(9), 1959.
https://doi.org/10.3390/plants10091959
13. Micucci, M., Protti, M., Aldini, R., Frosini, M., Corazza, I., Marzetti, C. et al. Thymus vulgaris L. essential oil solid formulation: chemical profile and spasmolytic and antimicrobial effects. Biomolecules, 2020, 10(6), 860.
https://doi.org/10.3390/biom10060860
14. Tohidi, B., Rahimmalek, M. and Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem., 2017, 220, 153–161.
https://doi.org/10.1016/j.foodchem.2016.09.203
15. Sateriale, D., Forgione, G., De Cristofaro, G. A., Facchiano, S., Boscaino, F., Pagliuca, C. et al. Towards green strategies of food security: antibacterial synergy of essential oils from Thymus vulgaris and Syzygium aromaticum to inhibit Escherichia coli and Staphylococcus aureus pathogenic food isolates. Microorganisms, 2022, 10(12), 2446.
https://doi.org/10.3390/microorganisms10122446
16. Casarin, L. S., Casarin, F. D. O., Brandelli, A., Novello, J., Ferreira, S. O. and Tondo, E. C. Influence of free energy on the attachment of Salmonella Enteritidis and Listeria monocytogenes on stainless steels AISI 304 and AISI 316. LWT - Food Sci. Technol., 2016, 69, 131–138.
https://doi.org/10.1016/j.lwt.2016.01.035
17. Čabarkapa, I., Čolović, R., Đuragić, O., Popović, S., Kokić, B., Milanov, D. et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, 2019, 35(3), 361–375.
https://doi.org/10.1080/08927014.2019.1610169
18. Boachon, B., Buell, C. R., Crisovan, E., Dudareva, N., Garcia, N., Godden, G. et al. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol. Plant, 2018, 11(8), 1084–1096.
https://doi.org/10.1016/j.molp.2018.06.002
19. Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N. and Chalier, P. Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control, 2011, 22(10), 1582–1591.
https://doi.org/10.1016/j.foodcont.2011.03.014
20. Hu, D. and Coats, J. Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory. Pest Manag. Sci., 2008, 64(7), 775–779.
https://doi.org/10.1002/ps.1555
21. Davies, N. W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A., 1990, 503, 1–24.
https://doi.org/10.1016/S0021-9673(01)81487-4
22. Zenkevich, I. G. Analytical parameters of components of essential oils for their GC and GC-MS identification. Mono- and sesquiterpenes. Oxygen containing derivatives of mono- and sesquiterpenes hydrocarbons. Acetates of Terpenic Alcohols. Rastitelnye Resursy, 1996, 32, 48–58; 1997, 33, 16–28; 1999, 35, 30–37.
23. Raal, A., Arak, E. and Orav, A. Comparative chemical composition of the essential oil of Thymus vulgaris L. from different geographical sources. Herba Polonica, 2005, 51(1–2), 10–17.
https://www.infona.pl/resource/bwmeta1.element.agro-article-73d291cc-3766-4687-ac61-3f97e7b94a91
24. Ukrainian Scientific Pharmacopoeial Center of Drugs Quality. State Pharmacopoeia of Ukraine. 2nd ed. Kharkiv, Ukraine, 2015.
25. Lee Rodgers, J. and Nicewander, W. A. Thirteen ways to look at the correlation coefficient. Am. Stat., 1988, 42(1), 59–66.
https://doi.org/10.1080/00031305.1988.10475524
26. Paaver, U., Orav, A., Arak, E., Mäeorg, U. and Raal, A. Phytochemical analysis of the essential oil of Thymus serpyllum L. growing wild in Estonia. Nat. Prod. Res., 2008, 22(2), 108–115.
https://doi.org/10.1080/14786410601035118
27. Shanaida, M., Hudz, N., Bialon, M., Kryvtsova, M., Svydenko, L., Filipska, A. et al. Chromatographic profiles and antimicrobial activity of essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci., 2021, 28(11), 6145–6152.
https://doi.org/10.1016/j.sjbs.2021.06.068
28. Salehi, B., Mishra, A. P., Shukla, I., Sharifi‐Rad, M., Contreras, M. D. M., Segura‐Carretero, A. et al. Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res., 2018, 32(9), 1688–1706.
https://doi.org/10.1002/ptr.6109
29. Ilina, T., Skowrońska, W., Kashpur, N., Granica, S., Bazylko, A., Kovalyova, A. et al. Immunomodulatory activity and phytochemical profile of infusions from cleavers herb. Molecules, 2020, 25(16), 3721.
https://doi.org/10.3390/molecules25163721
30. Shanaida, M., Hudz, N., Korzeniowska, K. and Wieczorek, P. Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. Int. J. Green Pharm., 2018, 12(3), 200–204.
https://doi.org/10.22377/ijgp.v12i03.1952
31. Suntres, Z. E., Coccimiglio, J. and Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304–318.
https://doi.org/10.10 80/10408398.2011.653458
32. Mahran, Y. F., Al-Kharashi, L. A., Atawia, R. T., Alanazi, R. T., Dhahi, A. M. B., Alsubaie, R. et al. Radioprotective effects of carvacrol and/or thymol against gamma irradiation-induced acute nephropathy: in silico and in vivo evidence of the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide. Biomedicines, 2023, 11(9), 2521.
https://doi.org/10.3390/biomedicines11092521
33. Balahbib, A., El Omari, N., Hachlafi, N. EL., Lakhdar, F., El Menyiy, N., Salhi, N. et al. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol., 2021, 153, 112259.
https://doi.org/10.1016/j.fct.2021.112259
34. Cao, X.-L., Sparling, M. and Dabeka, R. p‐Cymene, a natural antioxidant, in Canadian total diet foods: occurrence and dietary exposures. J. Sci. Food Agric., 2019, 99(12), 5606–5609.
https://doi.org/10.1002/jsfa.9854
35. Vassiliou, E., Awoleye, O., Davis, A. and Mishra, S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci., 2023, 24(8), 6936.
https://doi.org/10.3390/ijms24086936
36. Joglekar, M. M., Panaskar, S. N. and Arvindekar, A. U. Inhibition of advanced glycation end product formation by cymene – a common food constituent. J. Funct. Foods, 2014, 6, 107–115.
https://doi.org/10.1016/j.jff.2013.09.024
37. de Oliveira Formiga, R., Alves Júnior, E. B., Vasconcelos, R. C., Araújo, A. A., de Carvalho, T. G., de Araújo Junior, R. F. et al. Effect of p-cymene and rosmarinic acid on gastric ulcer healing – involvement of multiple endogenous curative mechanisms. Phytomedicine, 2021, 86, 153497.
https://doi.org/10.1016/j.phymed.2021.153497
38. Machado, T. Q., da Fonseca, A. C. C., Duarte, A. B. S., Robbs, B. K. and de Sousa, D. P. A narrative review of the antitumor activity of monoterpenes from essential oils: an update. BioMed Res. Int., 2022, 2022(1), 1–20.
https://doi.org/10.1155/2022/6317201
39. Nadi, A., Shiravi, A. A., Mohammadi, Z., Aslani, A. and Zeinalian, M. Thymus vulgaris, a natural pharmacy against COVID-19: a molecular review. J. Herb. Med., 2023, 38, 100635.
https://doi.org/10.1016/j.hermed.2023.100635
40. Maffei, M. E. Plant natural sources of the endocannabinoid (E)-β-caryophyllene: a systematic quantitative analysis of published literature. Int. J. Mol. Sci., 2020, 21(18), 6540.
https://doi.org/10.3390/ijms21186540
41. Scandiffio, R., Geddo, F., Cottone, E., Querio, G., Antoniotti, S., Gallo, M. P. et al. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients, 2020, 12(11), 3273.
https://doi.org/10.3390/nu12113273
42. Liu, S., Long, Y., Yu, S., Zhang, D., Yang, Q., Ci, Z. et al. Borneol in cardio-cerebrovascular diseases: pharmacological actions, mechanisms, and therapeutics. Pharmacol. Res., 2021, 169, 105627.
https://doi.org/10.1016/j.phrs.2021.105627
43. Surendran, S., Qassadi, F., Surendran, G., Lilley, D. and Heinrich, M. Myrcene – what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8, 699666.
https://doi.org/10.3389/fnut.2021.699666
44. Bilbrey, J. A., Ortiz, Y. T., Felix, J. S., McMahon, L. R. and Wilkerson, J. L. Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology, 2022, 239(5), 1475–1486.
https://doi.org/10.1007/s00213-021-06031-2
45. Jiang, D., Zhu, Y., Yu, J. and Xu, X. Advances in research of pharmacological effects and formulation studies of linalool (in Chinese). Zhongguo Zhong Yao Za Zhi, 2015, 40(18), 3530–3533.
46. Echeverrigaray, S., Agostini, G., Atti-Serfini, L., Paroul, N., Pauletti, G. F. and Atti Dos Santos, A. C. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J. Agric. Food Chem., 2001, 49(9), 4220–4223.
https://doi.org/10.1021/jf010289j
47. Yousefi, V., Najaphy, A., Zebarjadi, A. and Safari, H. Genetic diversity and geographic dispersion in Thymus spp. as detected by RAPD markers. Philipp. J. Crop Sci., 2015, 40(1), 82–88.
48. Hordiei, K., Gontova, T., Trumbeckaite, S., Yaremenko, M. and Raudone, L. Phenolic composition and antioxidant activity of Tanacetum partheniumcultivated in different regions of Ukraine: insights into the flavonoids and hydroxycinnamic acids profile. Plants, 2023, 12(16), 2940.
https://doi.org/10.3390/plants12162940
49. Busconi, M., Soffritti, G., Stagnati, L., Marocco, A., Martínez, J. M., De Los Mozos Pascual, M. et al. Epigenetic stability in saffron (Crocus sativus L.) accessions during four consecutive years of cultivation and vegetative propagation under open field conditions. Plant Sci., 2018, 277, 1–10.
https://doi.org/10.1016/j.plantsci.2018.09.005
50. Barra, A. Factors affecting chemical variability of essential oils: a review of recent developments. Nat. Prod. Commun., 2009, 4(8).
https://doi.org/10.1177/1934578X0900400827
51. Soni, U., Brar, S. and Gauttam, V. K. Effect of seasonal variation on secondary metabolites of medicinal plants. Int. J. Pharm. Sci. Res., 2015, 6, 3654–3662.
52. Wang, Z., Nelson, D. R., Zhang, J., Wan, X. and Peters, R. J. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat. Prod. Rep., 2023, 40(2), 452–469.
https://doi.org/10.1039/D2NP00054G
53. György, Z., Incze, N. and Pluhár, Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochem. Syst. Ecol., 2020, 92, 104118.
https://doi.org/10.1016/j.bse.2020.104118
54. Satyal, P., Murray, B. L., McFeeters, R. L. and Setzer, W. N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods, 2016, 5(4), 70.
https://doi.org/10.3390/foods5040070
55. Chizzola, R., Michitsch, H. and Franz, C. Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem., 2008, 56(16), 6897–6904.
https://doi.org/10.1021/jf800617g
56. Thompson, J. D., Chalchat, J.-C., Michet, A., Linhart, Y. B. and Ehlers, B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol., 2003, 29(4), 859–880.
https://doi.org/10.1023/A:1022927615442