ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Comparative analysis of content and composition of essential oils of Thymus vulgaris L. from different regions of Europe; pp. 332–344
PDF | https://doi.org/10.3176/proc.2024.4.02

Authors
Ain Raal, Tetiana Gontova, Maie Palmeos, Anne Orav, Galiya Sayakova, Oleh Koshovyi
Abstract

Common thyme (Thymus vulgaris L., Lamiaceae) is one of the most well-known plants in the world, widely used in medicine, culinary arts, and cosmetics. The aim of this study was to analyse the content and composition of essential oils (EO) obtained from the T. vulgaris commercial samples grown in Estonia and in various European countries. Gas chromatography was used to characterize the quality and diversity of chemotypes of the studied plant raw material of different origins. The samples of the T. vulgaris herb contained 3–28 mL/kg of EO, and in five samples it was below the European Pharmacopoeia (Ph. Eur.) requirement (minimum 12 mL/kg). In total, 44 EO compounds were identified in the essential oils of the studied T. vulgaris samples. Among them, five principal compounds were carvacrol (2.3–87.5%), thymol (0.9–71.2%), p-cymene (0.3–26.0%), γ-terpinene (0.1–16.1%), and (E)-β-caryophyllene (0.6–9.2%). It was concluded that the main compound of T. vulgaris EO (n = 37) was thymol with an average content of 41.1%. Monoterpenoids (90.5%) and sesquiterpenoids (5.7%) were the most dominating groups of terpenoids in the studied EO. Regarding the minimum and maximum content of key compounds in EO, none of the studied samples (n = 22) fully met the requirements of Ph. Eur. 11. The content of the four most important terpenoids (thymol, carvacrol, p-cymene, and γ-terpinene) in the EO of T. vulgaris does not change much from the beginning to the end of the flowering period. Correlations between the content of the most important (>2%) components (n = 14) of the studied EO (n = 37) showed a level >0.9 in several cases. Among seven studied chemotypes of T. vulgaris EO, five contained thymol as one of the main components.

References

1. Kim, M., Sowndhararajan, K. and Kim, S. The chemical composition and biological activities of essential oil from Korean native thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules, 2022, 27(13), 4251. 
https://doi.org/10.3390/molecules27134251  

2. Hammoudi Halat, D., Krayem, M., Khaled, S. and Younes, S. A focused insight into thyme: biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients, 2022, 14(10), 2104. 
https://doi.org/10.3390/nu14102104  

3. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F. and Morshedloo, M. R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod., 2019, 135, 311–320. 
https://doi.org/10.1016/j.indcrop.2019.04.055  

4. Nagoor Meeran, M. F., Javed, H., Al Taee, H., Azimullah, S. and Ojha, S. K. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic poten­tial and pharmaceutical development. Front. Pharmacol., 2017, 8, 380. 
https://doi.org/10.3389/fphar.2017.00380  

5. Council of Europe. European Pharmacopoeia. 11th ed. Strasbourg, 2022.

6. Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A. T. and Horhat, F. G. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life, 2014, 7(Spec. Iss. 3), 56–60.

7. Mahboubi, M., Heidarytabar, R., Mahdizadeh, E. and Hosseini, H. Antimicrobial activity and chemical composi­tion of Thymus species and Zataria multifloraessential oils. Agric. Nat. Resour., 2017, 51(5), 395–401. 
https://doi.org/10.1016/j.anres.2018.02.001  

8. Šegvić Klarić, M., Kosalec, I., Mastelić, J., Piecková, E. and Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 2007, 44(1), 36–42. 
https://doi.org/10.1111/j.1472-765X.2006.02032.x  

9. El Yaagoubi, M., Mechqoq, H., El Hamdaoui, A., Jrv Mukku, V., El Mousadik, A., Msanda, F. et al. A review on Moroccan Thymus species: traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol., 2021, 278, 114205. 
https://doi.org/10.1016/j.jep.2021.114205  

10. Boukhatem, M. N., Darwish, N. H. E., Sudha, T., Bahlouli, S., Kellou, D., Benelmouffok, A. B. et al. In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing Thymus vulgaris (Lamiaceae) used for medici­nal purposes in Algeria: a new source of carvacrol. Sci. Pharm., 2020, 88(3), 33. 
https://doi.org/10.3390/scipharm88030033  

11. Schmidt, E., Wanner, J., Hiiferl, M., Jirovetz, L., Buchbauer, G., Gochev, V. et al. Chemical composition, olfactory analy­sis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun., 2012, 7(8), 1095–1098.
https://doi.org/10.1177/1934578X1200700833

12. Galovičová, L., Borotová, P., Valková, V., Vukovic, N. L., Vukic, M., Štefániková, J. et al. Thymus vulgaris essential oil and its biological activity. Plants, 2021, 10(9), 1959. 
https://doi.org/10.3390/plants10091959  

13. Micucci, M., Protti, M., Aldini, R., Frosini, M., Corazza, I., Marzetti, C. et al. Thymus vulgaris L. essential oil solid formulation: chemical profile and spasmolytic and anti­microbial effects. Biomolecules, 2020, 10(6), 860. 
https://doi.org/10.3390/biom10060860  

14. Tohidi, B., Rahimmalek, M. and Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and anti­oxidant activity of Thymus species collected from different regions of Iran. Food Chem., 2017, 220, 153–161. 
https://doi.org/10.1016/j.foodchem.2016.09.203  

15. Sateriale, D., Forgione, G., De Cristofaro, G. A., Facchiano, S., Boscaino, F., Pagliuca, C. et al. Towards green strategies of food security: antibacterial synergy of essential oils from Thymus vulgaris and Syzygium aromaticum to inhibit Escherichia coli and Staphylococcus aureus pathogenic food isolates. Microorganisms, 2022, 10(12), 2446. 
https://doi.org/10.3390/microorganisms10122446  

16. Casarin, L. S., Casarin, F. D. O., Brandelli, A., Novello, J., Ferreira, S. O. and Tondo, E. C. Influence of free energy on the attachment of Salmonella Enteritidis and Listeria monocytogenes on stainless steels AISI 304 and AISI 316. LWT - Food Sci. Technol., 2016, 69, 131–138. 
https://doi.org/10.1016/j.lwt.2016.01.035

17. Čabarkapa, I., Čolović, R., Đuragić, O., Popović, S., Kokić, B., Milanov, D. et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, 2019, 35(3), 361–375. 
https://doi.org/10.1080/08927014.2019.1610169  

18. Boachon, B., Buell, C. R., Crisovan, E., Dudareva, N., Garcia, N., Godden, G. et al. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol. Plant, 2018, 11(8), 1084–1096. 
https://doi.org/10.1016/j.molp.2018.06.002  

19. Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N. and Chalier, P. Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control, 2011, 22(10), 1582–1591. 
https://doi.org/10.1016/j.foodcont.2011.03.014  

20. Hu, D. and Coats, J. Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory. Pest Manag. Sci., 2008, 64(7), 775–779. 
https://doi.org/10.1002/ps.1555  

21. Davies, N. W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A., 1990, 503, 1–24.
https://doi.org/10.1016/S0021-9673(01)81487-4

22. Zenkevich, I. G. Analytical parameters of components of essential oils for their GC and GC-MS identification. Mono- and sesquiterpenes. Oxygen containing derivatives of mono- and sesquiterpenes hydrocarbons. Acetates of Terpenic Alcohols. Rastitelnye Resursy, 1996, 32, 48–58; 1997, 33, 16–28; 1999, 35, 30–37.

23. Raal, A., Arak, E. and Orav, A. Comparative chemical composition of the essential oil of Thymus vulgaris L. from dif­ferent geographical sources. Herba Polonica, 2005, 51(1–2), 10–17. 
https://www.infona.pl/resource/bwmeta1.element.agro-article-73d291cc-3766-4687-ac61-3f97e7b94a91  

24. Ukrainian Scientific Pharmacopoeial Center of Drugs Quality. State Pharmacopoeia of Ukraine. 2nd ed. Kharkiv, Ukraine, 2015.

25. Lee Rodgers, J. and Nicewander, W. A. Thirteen ways to look at the correlation coefficient. Am. Stat., 1988, 42(1), 59–66. 
https://doi.org/10.1080/00031305.1988.10475524  

26. Paaver, U., Orav, A., Arak, E., Mäeorg, U. and Raal, A. Phytochemical analysis of the essential oil of Thymus serpyllum L. growing wild in Estonia. Nat. Prod. Res., 2008, 22(2), 108–115. 
https://doi.org/10.1080/14786410601035118  

27. Shanaida, M., Hudz, N., Bialon, M., Kryvtsova, M., Svydenko, L., Filipska, A. et al. Chromatographic profiles and antimicrobial activity of essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci., 2021, 28(11), 6145–6152. 
https://doi.org/10.1016/j.sjbs.2021.06.068  

28. Salehi, B., Mishra, A. P., Shukla, I., Sharifi‐Rad, M., Contreras, M. D. M., Segura‐Carretero, A. et al. Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res., 2018, 32(9), 1688–1706. 
https://doi.org/10.1002/ptr.6109  

29. Ilina, T., Skowrońska, W., Kashpur, N., Granica, S., Bazylko, A., Kovalyova, A. et al. Immunomodulatory activity and phytochemical profile of infusions from cleavers herb. Molecules, 2020, 25(16), 3721. 
https://doi.org/10.3390/molecules25163721  

30. Shanaida, M., Hudz, N., Korzeniowska, K. and Wieczorek, P. Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species.  Int. J. Green Pharm., 2018, 12(3), 200–204. 
https://doi.org/10.22377/ijgp.v12i03.1952  

31. Suntres, Z. E., Coccimiglio, J. and Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304–318. 
https://doi.org/10.10 80/10408398.2011.653458  

32. Mahran, Y. F., Al-Kharashi, L. A., Atawia, R. T., Alanazi, R. T., Dhahi, A. M. B., Alsubaie, R. et al. Radioprotective effects of carvacrol and/or thymol against gamma irradiation-induced acute nephropathy: in silico and in vivo evidence of the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide. Biomedicines, 2023, 11(9), 2521. 
https://doi.org/10.3390/biomedicines11092521  

33. Balahbib, A., El Omari, N., Hachlafi, N. EL., Lakhdar, F., El Menyiy, N., Salhi, N. et al. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol., 2021, 153, 112259. 
https://doi.org/10.1016/j.fct.2021.112259  

34. Cao, X.-L., Sparling, M. and Dabeka, R. p‐Cymene, a natural antioxidant, in Canadian total diet foods: occurrence and dietary exposures. J. Sci. Food Agric., 2019, 99(12), 5606–5609. 
https://doi.org/10.1002/jsfa.9854  

35. Vassiliou, E., Awoleye, O., Davis, A. and Mishra, S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci., 2023, 24(8), 6936. 
https://doi.org/10.3390/ijms24086936  

36. Joglekar, M. M., Panaskar, S. N. and Arvindekar, A. U. Inhibition of advanced glycation end product formation by cymene – a common food constituent. J. Funct. Foods, 2014, 6, 107–115. 
https://doi.org/10.1016/j.jff.2013.09.024  

37. de Oliveira Formiga, R., Alves Júnior, E. B., Vasconcelos, R. C., Araújo, A. A., de Carvalho, T. G., de Araújo Junior, R. F. et al. Effect of p-cymene and rosmarinic acid on gastric ulcer healing – involvement of multiple endogenous curative mechanisms. Phytomedicine, 2021, 86, 153497. 
https://doi.org/10.1016/j.phymed.2021.153497  

38. Machado, T. Q., da Fonseca, A. C. C., Duarte, A. B. S., Robbs, B. K. and de Sousa, D. P. A narrative review of the antitumor activity of monoterpenes from essential oils: an update. BioMed Res. Int., 2022, 2022(1), 1–20. 
https://doi.org/10.1155/2022/6317201  

39. Nadi, A., Shiravi, A. A., Mohammadi, Z., Aslani, A. and Zeinalian, M. Thymus vulgaris, a natural pharmacy against COVID-19: a molecular review. J. Herb. Med., 2023, 38, 100635. 
https://doi.org/10.1016/j.hermed.2023.100635  

40. Maffei, M. E. Plant natural sources of the endocannabinoid (E)-β-caryophyllene: a systematic quantitative analysis of published literature. Int. J. Mol. Sci., 2020, 21(18), 6540. 
https://doi.org/10.3390/ijms21186540  

41. Scandiffio, R., Geddo, F., Cottone, E., Querio, G., Antoniotti, S., Gallo, M. P. et al. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients, 2020, 12(11), 3273. 
https://doi.org/10.3390/nu12113273  

42. Liu, S., Long, Y., Yu, S., Zhang, D., Yang, Q., Ci, Z. et al. Borneol in cardio-cerebrovascular diseases: pharmacological actions, mechanisms, and therapeutics. Pharmacol. Res., 2021, 169, 105627. 
https://doi.org/10.1016/j.phrs.2021.105627  

43. Surendran, S., Qassadi, F., Surendran, G., Lilley, D. and Heinrich, M. Myrcene – what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8, 699666. 
https://doi.org/10.3389/fnut.2021.699666  

44. Bilbrey, J. A., Ortiz, Y. T., Felix, J. S., McMahon, L. R. and Wilkerson, J. L. Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology, 2022, 239(5), 1475–1486. 
https://doi.org/10.1007/s00213-021-06031-2  

45. Jiang, D., Zhu, Y., Yu, J. and Xu, X. Advances in research of pharmacological effects and formulation studies of linalool (in Chinese). Zhongguo Zhong Yao Za Zhi, 2015, 40(18), 3530–3533.

46. Echeverrigaray, S., Agostini, G., Atti-Serfini, L., Paroul, N., Pauletti, G. F. and Atti Dos Santos, A. C. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J. Agric. Food Chem., 2001, 49(9), 4220–4223. 
https://doi.org/10.1021/jf010289j  

47. Yousefi, V., Najaphy, A., Zebarjadi, A. and Safari, H. Genetic diversity and geographic dispersion in Thymus spp. as detected by RAPD markers. Philipp. J. Crop Sci., 2015, 40(1), 82–88.

48. Hordiei, K., Gontova, T., Trumbeckaite, S., Yaremenko, M. and Raudone, L. Phenolic composition and antioxidant activity of Tanacetum partheniumcultivated in different regions of Ukraine: insights into the flavonoids and hydroxycinnamic acids profile. Plants, 2023, 12(16), 2940. 
https://doi.org/10.3390/plants12162940  

49. Busconi, M., Soffritti, G., Stagnati, L., Marocco, A., Martínez, J. M., De Los Mozos Pascual, M. et al. Epigenetic stability in saffron (Crocus sativus L.) accessions during four consecutive years of cultivation and vegetative propagation under open field conditions. Plant Sci., 2018, 277, 1–10. 
https://doi.org/10.1016/j.plantsci.2018.09.005  

50. Barra, A. Factors affecting chemical variability of essential oils: a review of recent developments. Nat. Prod. Commun., 2009, 4(8).
https://doi.org/10.1177/1934578X0900400827  

51. Soni, U., Brar, S. and Gauttam, V. K. Effect of seasonal variation on secondary metabolites of medicinal plants. Int. J. Pharm. Sci. Res., 2015, 6, 3654–3662.

52. Wang, Z., Nelson, D. R., Zhang, J., Wan, X. and Peters, R. J. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat. Prod. Rep., 2023, 40(2), 452–469. 
https://doi.org/10.1039/D2NP00054G  

53. György, Z., Incze, N. and Pluhár, Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochem. Syst. Ecol., 2020, 92, 104118. 
https://doi.org/10.1016/j.bse.2020.104118  

54. Satyal, P., Murray, B. L., McFeeters, R. L. and Setzer, W. N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods, 2016, 5(4), 70. 
https://doi.org/10.3390/foods5040070   

55. Chizzola, R., Michitsch, H. and Franz, C. Antioxidative properties of Thymus vulgaris leaves: comparison of dif­ferent extracts and essential oil chemotypes. J. Agric. Food Chem., 2008, 56(16), 6897–6904. 
https://doi.org/10.1021/jf800617g  

56. Thompson, J. D., Chalchat, J.-C., Michet, A., Linhart, Y. B. and Ehlers, B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol., 2003, 29(4), 859–880. 
https://doi.org/10.1023/A:1022927615442

Back to Issue