The aim of the article is to describe our work on peptides discovered in Dr. Mutt’s laboratory, particularly galanin. Some personal recollections of meetings with Viktor Mutt and a brief overview of early neuropeptide research at Karolinska Institutet are provided. General aspects on neuropeptide signalling and neuropeptide–neurotransmitter coexistence are followed by the presentation of a possible involvement of the galanin system in pain and depression. Special emphasis is on the role of galanin in the rat and human locus coeruleus. Additional analyses of the human postmortem brains have given results on galanin and other peptides both in the normal prefrontal cortex as well as in different brain regions of depressed patients who have committed suicide and in control subjects. Possible options for developing treatment strategies for pain and depression based on galaninergic mechanisms are discussed. Finally, some recent drugs approved by the FDA for the treatment of conditions such as migraine, which target the signalling of other peptides, are highlighted. In conclusion, the aim of the article is to highlight the potential of the large group of neuropeptides as targets for the development of drugs that may further help patients with illnesses afflicting the nervous system.
Andersson, P.-O., Bloom, S. R, Edwards, A. V. and Järhult, J. 1982. Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J. Physiol., 322(1), 469–483.
https://doi.org/10.1113/jphysiol.1982.sp014050
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J. and Shipley, M. T. 1996. Role of the locus coeruleus in emotional activation. Prog. Brain Res., 107, 379–402.
https://doi.org/10.1016/S0079-6123(08)61877-4
Banks, W. A. 2023. Viktor Mutt lecture: Peptides can cross the blood–brain barrier. Peptides, 169, 171079.
https://doi.org/10.1016/j.peptides.2023.171079
Barde, S. and Hökfelt, T. qPCR analysis of postmortem human dorsal root ganglia. Unpublished results.
Barde, S., Rüegg, J., Prud’homme, J., Ekström, T. J., Palkovits, M., Turecki, G. et al. 2016. Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc. Natl. Acad. Sci. U. S. A., 113(52), E8472–E8481.
https://doi.org/10.1073/pnas.1617824113
Barde, S., Aguila, J., Zhong, W., Solarz, A., Mei, I., Prud’homme, J. et al. 2024. Substance P, NPY, CCK and their receptors in five brain regions in major depressive disorder with transcriptomic analysis of locus coeruleus neurons. Eur. Neuropsychopharmacol. 78, 54–63.
https://doi.org/10.1016/j.euroneuro.2023.09.004
Barnabas, K., Zhang, L., Wang, H., Kirouac, G. and Vrontakis, M. 2016. Changes in galanin systems in a rat model of post-traumatic stress disorder (PTSD). PLOS ONE, 11(12), e0167569.
https://doi.org/10.1371/journal.pone.0167569
Bartfai, T., Fisone, G. and Langel, Ü. 1992. Galanin and galanin antagonists: molecular and biochemical perspectives. Trends Pharmacol. Sci., 13(8), 312–317.
https://doi.org/10.1016/0165-6147(92)90098-Q
Bayless, D. W., Davis, C. O., Yang, R., Wei, Y., de Andrade Carvalho, V. M., Knoedler, J. R. et al. 2023. A neural circuit for male sexual behavior and reward. Cell, 186(18), 3862–3881.
https://doi.org/10.1016/j.cell.2023.07.021
Bing, O., Möller, C., Engel, J. A., Söderpalm, B. and Heilig, M. 1993. Anxiolytic-like action of centrally administered galanin. Neurosci. Lett., 164(1–2), 17–20.
https://doi.org/10.1016/0304-3940(93)90846-D
Bouras, C., Magistretti, P. J. and Morrison, J. H. 1986. An immunohistochemical study of six biologically active peptides in the human brain. Hum. Neurobiol., 5(4), 213–226.
Bowers, C. W. Superfluous neurotransmitters? 1994. Trends Neurosci., 17(8), 315–320.
https://doi.org/10.1016/0166-2236(94)90168-6
Burbach, J. P. H. 2010. Neuropeptides from concept to online database www.neuropeptides.nl. Eur. J. Pharmacol., 626(1), 27–48.
https://doi.org/10.1016/j.ejphar.2009.10.015
Burgunder, J.-M. and Young, W. S. III. 1988. The distribution of thalamic projection neurons containing cholecystokinin messenger RNA, using in situ hybridization histochemistry and retrograde labeling. Mol. Brain Res., 4(3), 179–189.
https://doi.org/10.1016/0169-328X(88)90024-1
Caramia, M., Romanov, R. A., Sideromenos, S., Hevesi, Z., Zhao, M., Krasniakova, M. et al. 2023. Neuronal diversity of neuropeptide signaling, including galanin, in the mouse locus coeruleus. Proc. Natl. Acad. Sci. U. S. A., 120(31), e2222095120.
https://doi.org/10.1073/pnas.2222095120
Carlsson, A., Falck, B. and Hillarp, N. A. 1962. Cellular localization of brain monoamines. Acta Physiol. Scand. Suppl., 56(196), 1–28.
Chang, M. M., Leeman, S. E. and Niall, H. D. 1971. Amino-acid sequence of substance P. Nat. New Biol., 232, 86–87.
https://doi.org/10.1038/newbio232086a0
Chan-Palay, V., Jonsson, G. and Palay, S. L. 1978. Serotonin and substance P coexist in neurons of the rat’s central nervous system. Proc. Natl. Acad. Sci. U. S. A., 75(3), 1582–1586.
https://doi.org/10.1073/pnas.75.3.1582
Christiansen, S. H., Olesen, M. V., Wörtwein, G. and Woldbye, D. P. 2011. Fluoxetine reverts chronic restraint stress-induced depression-like behaviour and increases neuropeptide Y and galanin expression in mice. Behav. Brain Res., 216(2), 585–591.
https://doi.org/10.1016/j.bbr.2010.08.044
Costigan, M., Befort, K., Karchewski, L., Griffin, R. S., D’Urso, D., Allchorne, A. et al. 2002. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci., 3, 16.
https://doi.org/10.1186/1471-2202-3-16
da Conceição Machado, F., de Souza, L. V., Rangel, M., Jara, Z. P. and do Carmo Franco, M. 2018. Implication of galanin gene rs948854 polymorphism in depressive symptoms in adolescents. Horm. Behav., 97, 14–17.
https://doi.org/10.1016/j.yhbeh.2017.10.001
Dahlström, A. and Fuxe, K. 1964. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 232, 1–55.
Davidson, S., Lear, M., Shanley, L., Hing, B., Baizan-Edge, A., Herwig, A. et al. 2011. Differential activity by polymorphic variants of a remote enhancer that supports galanin expression in the hypothalamus and amygdala: implications for obesity, depression and alcoholism. Neuropsychopharmacology, 36(11), 2211–2221.
https://doi.org/10.1038/npp.2011.93
DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S. et al. 2013. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci., 14, 202–216.
https://doi.org/10.1038/nrn3444
Demsie, D. G., Altaye, B. M., Weldekidan, E., Gebremedhin, H., Alema, N. M., Tefera, M. M. et al. 2020. Galanin receptors as drug target for novel antidepressants: review. Biologics, 14, 37–45.
https://doi.org/10.2147/BTT.S240715
de Souza, M. M., Silote, G. P., Herbst, L. S., Funck, V. R., Joca, S. R. L. and Beijamini, V. 2018. The antidepressant-like effect of galanin in the dorsal raphe nucleus of rats involves GAL2 receptors. Neurosci. Lett., 681, 26–30.
https://doi.org/10.1016/j.neulet.2018.05.029
De Wied, D. 1969. Effects of peptide hormones on behavior. In Frontiers in Neuroendocrinology (Ganong, W. F. and Martini, L., eds). Oxford University Press, New York, 97–140.
De Wied D. 1977. Peptides and behavior. Life Sci., 20(2), 195–204.
https://doi.org/10.1016/0024-3205(77)90313-7
Díaz-Cabiale, Z., Flores-Burgess, A., Parrado, C., Narváez, M., Millón, C., Puigcerver, A. et al. 2014. Galanin receptor/neuropeptide Y receptor interactions in the central nervous system. Curr. Protein Pept. Sci., 15(7), 666–672.
https://doi.org/10.2174/1389203715666140901111709
Drevets, W. C., Savitz, J. and Trimble, M. 2008. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr., 13(8), 663–681.
https://doi.org/10.1017/s1092852900013754
Dubner, R. and Ruda, M. A. 1992. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci., 15(3), 96–103.
https://doi.org/10.1016/0166-2236(92)90019-5
Du Vigneaud, V. 1954. Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect., 50, 1–26.
Eiden, L. E., Hernández, V. S., Jiang, S. Z. and Zhang, L. 2022. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell. Mol. Life Sci., 79, 492.
https://doi.org/10.1007/s00018-022-04451-7
Erspamer, V., Melchiorri, P., Erspamer, C. F. and Negri, L. 1978. Polypeptides of the amphibian skin active on the gut and their mammalian counterparts. Adv. Exp. Med. Biol., 106, 51–64.
https://doi.org/10.1007/978-1-4684-7248-6_6
Euler, U. S. v. and Gaddum, J. H. 1931. An unidentified depressor substance in certain tissue extracts. J. Physiol., 72(1), 74–87. https://doi.org/10.1113/jphysiol.1931.sp002763
Flores-Burgess, A., Millón, C., Gago, B., García-Durán, L., Cantero-García, N., Puigcerver, A. et al. 2022. Galanin (1–15) enhances the behavioral effects of fluoxetine in the olfactory bulbectomy rat, suggesting a new augmentation strategy in depression. Int. J. Neuropsychopharmacol., 25(4), 307–318.
https://doi.org/10.1093/ijnp/pyab089
Fonseca-Rodrigues, D., Almeida, A. and Pinto-Ribeiro, F. 2022. A new gal in town: a systematic review of the role of galanin and its receptors in experimental pain. Cells, 2022, 11(5), 839.
https://doi.org/10.3390/cells11050839
Foote, S. L., Bloom, F. E. and Aston-Jones, G. 1983. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol. Rev., 63(3), 844–914.
https://doi.org/10.1152/physrev.1983.63.3.844
Freimann, K., Kurrikoff, K. and Langel, Ü. 2015. Galanin receptors as a potential target for neurological disease. Expert Opin. Ther. Targets, 19(12), 1665–1676.
https://doi.org/10.1517/14728222.2015.1072513
Fuxe, K., Jansson, A., Diaz-Cabiale, Z., Andersson, A., Tinner, B., Finnman, U. B. et al. 1998. Galanin modulates 5-hydroxytryptamine functions. Focus on galanin and galanin fragment/5-hydroxytryptamine1A receptor interactions in the brain. Ann. N. Y. Acad. Sci., 863, 274–290.
https://doi.org/10.1111/j.1749-6632.1998.tb10702.x
Fuxe, K., Dahlström, A. B., Jonsson, G., Marcellino, D., Guescini, M., Dam, M. et al. 2010. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol., 90(2), 82–100.
https://doi.org/10.1016/j.pneurobio.2009.10.012
Geffen, L. B., Livett, B. G. and Rush, R. A. 1969. Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol., 204(3), 593–605.
https://doi.org/10.1113/jphysiol.1969.sp008934
Genders, S. G., Scheller, K. J. and Djouma, E. 2020. Neuropeptide modulation of addiction: focus on galanin. Neurosci. Biobehav. Rev., 110, 133–149.
https://doi.org/10.1016/j.neubiorev.2018.06.021
Glock, C., Heumüller, M. and Schuman, E. M. 2017. mRNA transport & local translation in neurons. Curr. Opin. Neurobiol., 45, 169–177.
https://doi.org/10.1016/j.conb.2017.05.005
Gonda, X., Hullam, G., Antal, P., Eszlari, N., Petschner, P., Hökfelt, T. G. et al. 2018. Significance of risk polymorphisms for depression depends on stress exposure. Sci. Rep., 8, 3946.
https://doi.org/10.1038/s41598-018-22221-z
Griebel, G. and Holsboer, F. 2012. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat. Rev. Drug Discov., 11, 462–478.
https://doi.org/10.10 38/nrd3702
Guillaumin, M. C. C. and Burdakov, D. 2021. Neuropeptides as primary mediators of brain circuit connectivity. Front. Neurosci., 15, 644313.
https://doi.org/10.3389/fnins.2021.644313
Guillemin, R. 1978. Control of adenohypophysial functions by peptides of the central nervous system. Harvey Lect., 71, 71–131.
https://pubmed.ncbi.nlm.nih.gov/101483/
Hargreaves, R., Ferreira, J. C. A., Hughes, D., Brands, J., Hale, J., Mattson, B. et al. 2011. Development of aprepitant, the first neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Ann. N. Y. Acad. Sci., 1222, 40–48.
https://doi.org/10.1111/j.1749-6632.2011.05961.x
He, B., Fang, P., Guo, L., Shi, M., Zhu, Y., Xu, B. et al. 2017. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma. J. Neurosci. Res., 95(4), 1036–1043.
https://doi.org/10.1002/jnr.23869
Heilig, M. 2004. The NPY system in stress, anxiety and depression. Neuropeptides, 38(4), 213–224.
https://doi.org/10.1016/j.npep.2004.05.002
Hobson, S.-A., Bacon, A., Elliot-Hunt, C. R., Holmes, F. E., Kerr, N. C. H., Pope, R. et al. 2010. Galanin acts as a trophic factor to the central and peripheral nervous systems. In Galanin. Experientia Supplematum (Hökfelt, T., ed.). Springer, Basel, 102, 25–38.
https://doi.org/10.1007/978-3-0346-0228-0_3
Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A., Barkan, E. R., Graybuck, L. T. et al. 2019. Conserved cell types with divergent features in human versus mouse cortex. Nature, 573, 61–68.
https://doi.org/10.1038/s41586-019-1506-7
Hökfelt, T. 1991. Neuropeptides in perspective: the last ten years. Neuron, 7(6), 867–879.
https://doi.org/10.1016/0896-6273(91)90333-u
Hökfelt, T. (ed.). 2010. Galanin. Exp. Suppl., 102. Springer, Basel.
https://doi.org/10.1007/978-3-0346-0228-0
Hökfelt, T. and Crawley, J. (eds). 2005. Special Issue on Galanin. In Proceedings of the Third International Symposium on Galanin and Its Receptors, San Diego, California, USA, 21–22 October 2004. Neuropeptides, 39, 125–362.
https://doi.org/10.1016/j.npep.2005.03.002
Hökfelt, T. and Wiesenfeld-Hallin, Z. 2024. The therapeutic potential of galanin in the management of pain – a review article. Dan. Med. J., 71(2), A10230653.
https://doi.org/10.61409/a10230653
Hökfelt, T., Kellerth, J. O., Nilsson, G. and Pernow, B. 1975. Substance P: localization in the central nervous system and in some primary sensory neurons. Science, 190(4217), 889–890.
https://doi.org/10.1126/science.242075
Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R. and Nilsson, G. 1977. Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc. Natl. Acad. Sci. U. S. A., 74(7), 3081–3085.
https://doi.org/10.1073/pnas.74.7.3081
Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E. et al. 1978. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience, 3(6), 517–538.
https://doi.org/10.1016/0306-4522(78)90017-9
Hökfelt, T., Rehfeld, J. F., Skirboll, L., Ivemark, B., Goldstein, M. and Markey, K. 1980a. Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature, 285, 476–478.
https://doi.org/10.1038/285476a0
Hökfelt, T., Johansson, O., Ljungdahl, Å., Lundberg, J. M. and Schultzberg, M. 1980b. Peptidergic neurones. Nature, 284, 515–521.
https://doi.org/10.1038/284515a0
Hökfelt, T., Millhorn, D., Seroogy, K., Tsuruo, Y., Ceccatelli, S., Lindh, B. et al. 1987. Coexistence of peptides with classical neurotransmitters. Experientia, 43, 768–780.
https://doi.org/10.1007/BF01945354
Hökfelt, T., Bartfai, T., Jacobowitz, D. and Ottoson, D. (eds). 1991. Galanin. A New Multifunctional Peptide in The Neuro-Endocrine System. Wenner-Gren Symposium, 58. Macmillan, London.
https://doi.org/10.1007/978-1-349-12664-4
Hökfelt, T., Bartfai, T. and Crawley, J. (eds). 1998. Galanin: Basic Research Discoveries and Therapeutic Implications. Ann. N. Y. Acad. Sci., 863(1), 1–469.
https://doi.org/10.1111/j.1749-6632.1998.tb10678.x
Hökfelt, T., Barde, S., Xu, Z. D., Kuteeva, E., Rüegg, J., Le Maitre, E. et al. 2018. Neuropeptide and small transmitter coexistence: fundamental studies and relevance to mental illness. Front. Neural Circuits, 12, 106.
https://doi.org/10.3389/fncir.2018.00106
Holmes, P. V. 2014. Trophic mechanisms for exercise-induced stress resilience: potential role of interactions between BDNF and galanin. Front. Psychiatry, 5, 90.
https://doi.org/10.3389/fpsyt.2014.00090
Holmes, A. and Picciotto, M. R. 2006. Galanin: a novel therapeutic target for depression, anxiety disorders and drug addiction? CNS Neurol. Disord. Drug Targets, 5(2), 225–232.
http://dx.doi.org/10.2174/187152706776359600
Holmes, A., Heilig, M., Rupniak, N. M. J., Steckler, T. and Griebel, G. 2003. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci., 24(11), 580–588.
https://doi.org/10.1016/j.tips.2003.09.011
Holmes, F. E., Mahoney, S.-A. and Wynick, D. 2005. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides, 39(3), 191–199.
https://doi.org/10.1016/j.npep.2005.01.001
Jörnvall, H., Agerberth, B. and Zasloff, M. 2008. Viktor Mutt: a giant in the field of bioactive peptides. Compr. Biochem., 46, 397–416.
https://doi.org/10.1016/S0069-8032(08)00006-5
Juhasz, G., Hullam, G., Eszlari, N., Gonda, X., Antal, P., Anderson, I. M. et al. 2014. Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc. Natl. Acad. Sci. U. S. A., 111(16), E1666–1673.
https://doi.org/10.1073/pnas.1403649111
Kadriu, B., Musazzi, L., Henter, I. D., Graves, M., Popoli, M. and Zarate, C. A., Jr. 2019. Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int. J. Neuropsychopharmacol., 22(2), 119–135.
https://doi.org/10.1093/ijnp/pyy094
Kastin, A. J. (ed.). 2013. Handbook of Biologically Active Peptides. 2nd ed. Academic Press/Elsevier, San Diego, London, Waltham, MA.
https://doi.org/10.1016/C2010-0-66490-X
Kautz, M., Charney, D. S. and Murrough, J. W. 2017. Neuropeptide Y, resilience, and PTSD therapeutics. Neurosci. Lett., 649, 164–169.
https://doi.org/10.1016/j.neulet.2016.11.061
Kawa, L., Barde, S., Arborelius, U. P., Theodorsson, E., Agoston, D., Risling, M. et al. 2016. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury. Exp. Neurol., 279, 159–167.
https://doi.org/10.1016/j.expneurol.2016.02.019
Kerr, B. J., Wynick, D., Thompson, S. W. and McMahon, S. B. 2000. The biological role of galanin in normal and neuropathic states. Prog. Brain Res., 129, 219–230.
https://doi.org/10.1016/s0079-6123(00)29016-x
Keszler, G., Molnár, Z., Rónai, Z., Sasvári-Székely, M., Székely, A. and Kótyuk, E. 2019. Association between anxiety and non-coding genetic variants of the galanin neuropeptide. PLOS ONE, 14(12), e0226228.
https://doi.org/10.1371/journal.pone.0226228
Konkel, M. J., Lagu, B., Boteju, L. W., Jimenez, H., Noble, S., Walker, M. W. et al. 2006. 3-arylimino-2-indolones are potent and selective galanin GAL3 receptor antagonists. J. Med. Chem., 49(13), 3757–3758.
https://doi.org/10.1021/jm060001n
Kramer, M. S., Cutler, N., Feighner, J., Shrivastava, R., Carman, J., Sramek, J. J. et al. 1998. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science, 281(5383), 1640–1645.
https://doi.org/10.1126/science.281.5383.1640
Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. and Duman, R. S. 2019. Ketamine: a paradigm shift for depression research and treatment. Neuron, 101(5), 774–778.
https://doi.org/10.1016/j.neuron.2019.02.005
Kuteeva, E., Wardi, T., Lundström, L., Sollenberg, U., Langel, Ü., Hökfelt, T. et al. 2008. Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology, 33(11), 2573–2585.
https://doi.org/10.1038/sj.npp.1301660
Kuteeva, E., Hökfelt, T., Wardi, T. and Ogren, S. O. 2010. Galanin, galanin receptor subtypes and depression-like behaviour. Exp. Suppl., 102, 163–181.
https://doi.org/10.1007/978-3-0346-0228-0_12
Landry, M., Åman, K., Dostrovsky, J., Lozano, A. M., Carlstedt, T., Spenger, C. et al. 2003. Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience, 117(4), 795–809.
https://doi.org/10.1016/S0306-4522(02)00965-X
Landry, M., Bouali-Benazzouz, R., André, C., Shi, T. J. S., Léger, C., Nagy, F. et al. 2006. Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. J. Comp. Neurol., 499(3), 391–403.
https://doi.org/10.1002/cne.21109
Lang, R., Gundlach, A. L., Holmes, F. E., Hobson, S. A., Wynick, D., Hökfelt, T. et al. 2015. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol. Rev., 67(1), 118–175.
https://doi.org/10.1124/pr.112.006536
Le Maître, E., Barde, S. S., Palkovits, M., Diaz-Heijtz, R. and Hökfelt, T. G. 2013. Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc. Natl. Acad. Sci. U. S. A., 110(6), E536–545.
https://doi.org/10.1073/pnas.1221378110
Li, X., Andrusivova, Z., Czarnewski, P., Langseth, C. M., Andersson, A., Liu, Y. et al. 2023. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci., 26, 891–901.
https://doi.org/10.1038/s41593-023-01312-9
Liu, H.-X. and Hökfelt, T. The participation of galanin in pain processing at the spinal level. 2002. Trends Pharmacol. Sci., 23(10), 468–474.
https://doi.org/10.1016/S0165-6147(02)02074-6
Liu, H.-X., Brumovsky, P., Schmidt, R., Brown, W., Payza, K., Hodzic, L. et al. 2001. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc. Natl. Acad. Sci. U. S. A., 98(17), 9960–9964.
https://doi.org/10.1073/pnas.161293598
Ljungdahl, Å., Hökfelt, T. and Nilsson, G. 1978. Distribution of substance P-like immunoreactivity in the central nervous system of the rat—I. Cell bodies and nerve terminals. Neuroscience, 3(10), 861–943.
https://doi.org/10.1016/0306-4522(78)90116-1
Lu, X., Barr, A. M., Kinney, J. W., Sanna, P., Conti, B., Behrens, M. M. et al. 2005. A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc. Natl. Acad. Sci. U. S. A. 102(3), 874–879.
https://doi.org/10.1073/pnas.0408891102
Lu, X., Sharkey, L. and Bartfai T. 2007. The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurol. Disord. Drug Targets, 6(3), 183–192.
https://doi.org/10.2174/187152707780619335
Ludwig, M. and Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci., 7, 126–136.
https://doi.org/10.1038/nrn1845
Lundberg, J. M., Anggård, A., Emson, P., Fahrenkrug, J. and Hökfelt, T. 1981. Vasoactive intestinal polypeptide and cholinergic mechanisms in cat nasal mucosa: studies on choline acetyltransferase and release of vasoactive intestinal polypeptide. Proc. Natl. Acad. Sci. U. S. A., 78(8), 5255–5259.
https://doi.org/10.1073/pnas.78.8.5255
Ma, X., Tong, Y. G., Schmidt, R., Brown, W., Payza, K., Hodzic, L. et al. 2001. Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res., 919(1), 169–174.
https://doi.org/10.1016/s0006-8993(01)03033-5
Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M. and Nakanishi, S. 1987. cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature, 329, 836–838.
https://doi.org/10.1038/329836a0
Mathé, A. A., Michaneck, M., Berg, E., Charney, D. S. and Murrough, J. W. 2020. A randomized controlled trial of intranasal neuropeptide Y in patients with major depressive disorder. Int. J. Neuropsychopharmacol., 23(12), 783–790.
https://doi.org/10.1093%2Fijnp%2Fpyaa054
McDonald, T. J., Nilsson, G., Vagne, M., Ghatei, M., Bloom, S. R. and Mutt, V. 1978. A gastrin releasing peptide from the porcine nonantral gastric tissue. Gut, 19(9), 767–774.
https://doi.org/10.1136/gut.19.9.767
Melander, T., Staines, W. A., Hökfelt, T., Rökaeus, Å., Eckenstein, F., Salvaterra, P. M. et al. 1985. Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res., 360(1–2), 130–138.
https://doi.org/10.1016/0006-8993(85)91228-4
Melander, T., Hökfelt, T., Rökaeus, A., Cuello, A. C., Oertel, W. H., Verhofstad, A. et al. 1986a. Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J. Neurosci., 6(12), 3640–3654.
https://doi.org/10.1523/jneurosci.06-12-03640.1986
Melander, T., Hökfelt, T. and Rökaeus, A. 1986b. Distribution of galaninlike immunoreactivity in the rat central nervous system. J. Comp. Neurol., 248(4), 475–517.
https://doi.org/10.1002/cne.902480404
Merchenthaler, I., López, F. J. and Negro-Vilar, A. 1993. Anatomy and physiology of central galanin-containing pathways. Prog. Neurobiol., 40(6), 711–769.
https://doi.org/10.1016/0301-0082(93)90012-h
Millón, C., Flores-Burgess, A., Narváez, M., Borroto-Escuela, D. O., Gago, B., Santín, L. et al. 2017. The neuropeptides galanin and galanin(1–15) in depression-like behaviours. Neuropeptides, 64, 39–45.
https://doi.org/10.1016/j.npep.2017.01.004
Mills, E. G., Izzi-Engbeaya, C., Abbara, A., Comninos, A. N. and Dhillo, W. S. 2021. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat. Rev. Endocrinol., 17(2), 97–113.
https://doi.org/10.1038/s41574-020-00438-1
Mirabeau, O., Perlas, E., Severini, C., Audero, E., Gascuel, O., Possenti, R. et al. 2007. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res., 17(3), 320–327.
https://doi.org/10.1101/gr.5755407
Morales-Medina, J. C., Dumont, Y. and Quirion, R. 2010. A possible role of neuropeptide Y in depression and stress. Brain Res., 1314, 194–205.
https://doi.org/10.1016/j.brainres.2009.09.077
Moroz, L. L. 2015. Convergent evolution of neural systems in ctenophores. J. Exp. Biol., 218(Pt 4), 598–611.
https://doi.org/10.1242/jeb.110692
Murck, H., Held, K., Ziegenbein, M., Künzel, H., Holsboer, F. and Steiger, A. 2004. Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology, 29(9), 1205–1211.
https://doi.org/10.1016/j.psyneuen.2004.02.006
Mutt, V. 1982. Chemistry of the gastrointestinal hormones and hormone-like peptides and a sketch of their physiology and pharmacology. Vitam. Horm., 39, 231–427.
https://doi.org/10.1016/s0083-6729(08)61138-3
Mutt, V. 1990. Recent developments in the chemistry of gastrointestinal peptides. Eur. J. Clin. Invest., 20(1), 2–9.
https://doi.org/10.1111/j.1365-2362.1990.tb01770.x
Mutt, V. and Jorpes, J. E. 1968. Structure of porcine cholecystokinin-pancreozymin. Cleavage with thrombin and with trypsin. Eur. J. Biochem., 6(1), 156–162.
https://doi.org/10.1111/j.1432-1033.1968.tb00433.x
Mutt, V. and Said, S. I. 1974. Structure of the porcine vasoactive intestinal octacosapeptide. The amino-acid sequence. Use of kallikrein in its determination. Eur. J. Biochem., 42(2), 581–589.
https://doi.org/10.1111/j.1432-1033.1974.tb03373.x
Nahvi, R. J. and Sabban, E. L. 2020. Sex differences in the neuropeptide Y system and implications for stress related disorders. Biomolecules, 10(9), 1248.
https://doi.org/10.3390/biom10091248
Nelson, T. S. and Taylor, B. K. 2021. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog. Neurobiol., 196, 101894.
https://doi.org/10.1016/j.pneurobio.2020.101894
Ohtaki, T., Kumano, S., Ishibashi, Y., Ogi, K., Matsui, H., Harada, M. et al. 1999. Isolation and cDNA cloning of a novel galanin-like peptide (GALP) from porcine hypothalamus. J. Biol. Chem., 274(52), 37041–37045.
https://doi.org/10.1074/jbc.274.52.37041
Oliveira Volpe, C. M., Vaz, T., Rocha-Silva, F., Villar-Delfino, P. H. and Nogueira-Machado, J. A. 2020. Is galanin a promising therapeutic resource for neural and nonneural diseases? Curr. Drug Targets, 21(9), 922–929.
https://doi.org/10.2174/1389450121666200225112055
Osakada, T., Yan, R., Jiang, Y., Wei, D., Tabuchi, R., Dai, B. et al. 2024. A dedicated hypothalamic oxytocin circuit controls aversive social learning. Nature, 626, 347–356.
https://doi.org/10.1038/s41586-023-06958-w
Pérez de la Mora, M., Borroto-Escuela, D. O., Crespo-Ramírez, M., Rejón-Orantes, J. D. C., Palacios-Lagunas, D. A., Martínez-Mata, M. K. et al. 2022. Dysfunctional heteroreceptor complexes as novel targets for the treatment of major depressive and anxiety disorders. Cells, 11(11), 1826.
https://doi.org/10.3390/cells11111826
Pernow, B. 1953a. Distribution of substance P in the central and peripheral nervous system. Nature, 171(4356), 746.
https://doi.org/10.1038/171746a0
Pernow, B. 1953b. Studies on substance P: purification, occurrence and biological actions. Acta Physiol. Scand. Suppl., 29(105), 1–89.
Pieribone, V. A., Xu, Z. Q., Zhang, X., Grillner, S., Bartfai, T. and Hökfelt, T. 1995. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience, 64(4), 861–874.
https://doi.org/10.1016/0306-4522(94)00450-j
Pizzagalli, D. A., Webb, C. A., Dillon, D. G., Tenke, C. E., Kayser, J., Goer, F. et al. 2018. Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: a randomized clinical trial. JAMA Psychiatry, 75(6), 547–554.
https://doi.org/10.1001/jamapsychiatry.2018.0252
Rökaeus, A. and Brownstein, M. J. 1986. Construction of a porcine adrenal medullary cDNA library and nucleotide sequence analysis of two clones encoding a galanin precursor. Proc. Natl. Acad. Sci. U. S. A., 83(17), 6287–6291.
https://doi.org/10.1073/pnas.83.17.6287
Rökaeus, A., Melander, T., Hökfelt, T., Lundberg, J. M., Tatemoto, K., Carlquist, M. et al. 1984. A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci. Lett., 47(2), 161–166.
https://doi.org/10.1016/0304-3940(84)90423-3
Saar, I., Runesson, J., Järv, J., Kurrikoff, K. and Langel, Ü. 2013. Novel galanin receptor subtype specific ligand in depression like behavior. Neurochem Res., 38(2), 398–404.
https://doi.org/10.1007/s11064-012-0933-8
Sachkova, M. Y., Nordmann, E.-L., Soto-Àngel, J. J., Meeda, Y., Górski, B., Naumann, B. et al. 2021. Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. Curr. Biol., 31(23), 5274–5285.
https://doi.org/10.1016/j.cub.2021.09.005
Said, S. I. and Mutt, V. 1970. Polypeptide with broad biological activity: isolation from small intestine. Science, 169(3951), 1217–1218.
https://doi.org/10.1126/science.169.3951.1217
Santic, R., Schmidhuber, S. M., Lang, R., Rauch, I., Voglas, E., Eberhard, N. et al. 2007. Alarin is a vasoactive peptide. Proc. Natl. Acad. Sci. U. S. A., 104(24), 10217–10222.
https://doi.org/10.1073/pnas.0608585104
Schally, A. V., Coy, D. H. and Meyers, C. A. 1978. Hypothalamic regulatory hormones. Annu. Rev. Biochem., 47, 89–128.
https://doi.org/10.1146/annurev.bi.47.070178.000513
Sciolino, N. R., Smith, J. M., Stranahan, A. M., Freeman, K. G., Edwards, G. L., Weinshenker, D. et al. 2015. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology, 89, 255–264.
https://doi.org/10.1016/j.neuropharm.2014.09.029
Seutin, V., Verbanck, P., Massotte, L. and Dresse, A. 1989. Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol., 164(2), 373–376.
https://doi.org/10.1016/0014-2999(89)90481-0
Sevcik, J., Finta, E. P. and Illes, P. 1993. Galanin receptors inhibit the spontaneous firing of locus coeruleus neurones and interact with μ-opioid receptors. Eur. J. Pharmacol., 230(2), 223–230.
https://doi.org/10.1016/0014-2999(93)90806-s
Shehab, S. A. and Atkinson, M. E. 1986. Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons. Brain Res., 372(1), 37–44.
https://doi.org/10.1016/0006-8993(86)91456-3
Šípková, J., Kramáriková, I., Hynie, S. and Klenerová, V. 2017. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol. Res., 66(5), 729–740.
https://doi.org/10.33549/physiolres.933576
Skofitsch, G. and Jacobowitz, D. M. 1985. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides, 6(3), 509–546.
https://doi.org/10.1016/0196-9781(85)90118-4
Strand, F. L. 1999. Neuropeptides: Regulators of Physiological Processes. MIT Press, Cambridge, MA.
https://doi.org/10.7551/mitpress/4950.001.0001
Swanson, C. J., Blackburn, T. P., Zhang, X., Zheng, K., Xu, Z.-Q., Hökfelt, T. et al. 2005. Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc. Natl. Acad. Sci. U. S. A., 102(48), 17489–17494.
https://doi.org/10.1073/pnas.0508970102
Erratum in: Proc. Natl. Acad. Sci. U. S. A., 2006, 103(14), 5632. Erratum in: Proc. Natl. Acad. Sci. U. S. A., 2006, 103(40), 14978.
https://doi.org/10.1073/pnas.0601790103
Tatemoto, K. and Mutt, V. 1978. Chemical determination of polypeptide hormones. Proc. Natl. Acad. Sci. U. S. A., 75(9), 4115–4119.
https://doi.org/10.1073/pnas.75.9.4115
Tatemoto, K. and Mutt, V. 1980. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature, 285(5764), 417–418.
https://doi.org/10.1038/285417a0
Tatemoto, K., Carlquist, M. and Mutt, V. 1982. Neuropeptide Y – a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature, 296(5858), 659–660.
https://doi.org/10.1038/296659a0
Tatemoto, K., Rökaeus, Å., Jörnvall, H., McDonald, T. J. and Mutt, V. 1983. Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett., 164(1), 124–128.
https://doi.org/10.1016/0014-5793(83)80033-7
Tavares-Ferreira, D., Shiers, S., Ray, P. R., Wangzhou, A., Jeevakumar, V., Sankaranarayanan, I. et al. 2022. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med., 14(632), eabj8186.
https://doi.org/10.1126/scitranslmed.abj8186
Tillage, R. P., Sciolino, N. R., Plummer, N. W., Lustberg, D., Liles, L. C., Hsiang, M. et al. 2020. Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors. Brain Struct. Funct., 225(2), 785–803.
https://doi.org/10.1007/s00429-020-02035-4
Ullrich, D. and Mac Gillavry, D. W. 2021. Mini-review: a possible role for galanin in post-traumatic stress disorder. Neurosci. Lett., 756, 135980.
https://doi.org/10.1016/j.neulet.2021.135980
Unschuld, P. G., Ising, M., Erhardt, A., Lucae, S., Kohli, M., Kloiber, S. et al. 2008. Polymorphisms in the galanin gene are associated with symptom-severity in female patients suffering from panic disorder. J. Affect. Disord., 105(1–3), 177–184.
https://doi.org/10.1016/j.jad.2007.05.006
Unschuld, P. G., Ising, M., Roeske, D., Erhardt, A., Specht, M., Kloiber, S. et al. 2010. Gender-specific association of galanin polymorphisms with HPA-axis dysregulation, symptom severity, and antidepressant treatment response. Neuropsychopharmacology, 35, 1583–1592.
https://doi.org/10.1038/npp.2010.30
van den Pol, A. N. 2012. Neuropeptide transmission in brain circuits. Neuron, 76(1), 98–115.
https://doi.org/10.1016/j.neuron.2012.09.014
Vila-Porcile, E., Xu, Z.-Q., Mailly, P., Nagy, F., Calas, A., Hökfelt, T. et al. 2009. Dendritic synthesis and release of the neuropeptide galanin: morphological evidence from studies on rat locus coeruleus neurons. J. Comp. Neurol., 516(3), 199–212.
https://doi.org/10.1002/cne.22105
Villar, M. J., Cortés, R., Theodorsson, E., Wiesenfeld-Hallin, Z., Schalling, M., Fahrenkrug, J. et al. 1989. Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience, 33(3), 587–604.
https://doi.org/10.1016/0306-4522(89)90411-9
Villar, M. J., Wiesenfeld-Hallin, Z., Xu, X. J., Theodorsson, E., Emson, P. C. and Hökfelt, T. 1991. Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions. Exp. Neurol., 112(1), 29–39.
https://doi.org/10.1016/0014-4886(91)90111-o
Wakisaka, S., Kajander, K. C. and Bennett, G. J. 1991. Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci. Lett., 124(2), 200–203.
https://doi.org/10.1016/0304-3940(91)90093-9
Wang, H., Sun, H., Della Penna, K., Benz, R. J., Xu, J., Gerhold, D. L. et al. 2002. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience, 114(3), 529–546.
https://doi.org/10.1016/s0306-4522(02)00341-x
Wang, Y.-J., Li, H., Yang, Y.-T., Tie, C.-L., Li, F., Xu, Z.-Q. et al. 2013. Association of galanin and major depressive disorder in the Chinese Han population. PLOS ONE, 8(5), e64617.
https://doi.org/10.1371/journal.pone.0064617
Wang, Y.-J., Yang, Y.-T., Li, H., Liu, P.-Z., Wang, C.-Y. and Xu, Z.-Q. 2014. Plasma galanin is a biomarker for severity of major depressive disorder. Int. J. Psychiatry Med., 48(2), 109–119.
https://doi.org/10.2190/pm.48.2.d
Wang, Y., Wang, M., Yin, S., Jang, R., Wang, J., Xue, Z. et al. 2015. NeuroPep: a comprehensive resource of neuropeptides. Database, 2015, bav038.
https://doi.org/10.1093/database/bav038
Wang, K., Wang, S., Chen, Y., Wu, D., Hu, X., Lu, Y. et al. 2021. Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain. Cell Res., 31(8), 904–918.
https://doi.org/10.1038/s41422-021-00479-9
Erratum in: Cell Res., 2021, 31(8), 939–940.
https://doi.org/10.1038/s41422-021-00503-y
Weinshenker, D. and Holmes, P. V. 2016. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res., 1641(Pt B), 320–337.
https://doi.org/10.1016/j.brainres.2015.11.025
Weiss, J. M., Boss-Williams, K. A., Moore, J. P., Demetrikopoulos, M. K., Ritchie, J. C. and West, C. H. K. 2005. Testing the hypothesis that locus coeruleus hyperactivity produces depression-related changes via galanin. Neuropeptides, 39(3), 281–287.
https://doi.org/10.1016/j.npep.2004.12.028
Wiesenfeld-Hallin, Z., Villar, M. J. and Hökfelt, T. 1988. Intrathecal galanin at low doses increases spinal reflex excitability in rats more to thermal than mechanical stimuli. Exp. Brain Res., 71(3), 663–666.
https://doi.org/10.1007/bf00248760
Wiesenfeld-Hallin, Z., Xu, X.-J., Villar, M. J. and Hökfelt, T. 1989. The effect of intrathecal galanin on the flexor reflex in rat: increased depression after sciatic nerve section. Neurosci. Lett., 105(1–2), 149–154.
https://doi.org/10.1016/0304-3940(89)90027-x
Wiesenfeld-Hallin, Z., Xu, X.-J., Crawley, J. N. and Hökfelt, T. 2005. Galanin and spinal nociceptive mechanisms: recent results from transgenic and knock-out models. Neuropeptides, 39(3), 207–210.
https://doi.org/10.1016/j.npep.2004.12.017
Wray, N. R., Pergadia, M. L., Blackwood, D. H. R., Penninx, B. W. J. H., Gordon, S. D., Nyholt, D. R. et al. 2010. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol. Psychiatry, 17(1), 36–48.
https://doi.org/10.1038/mp.2010.109
Wrenn, C. C. and Crawley, J. N. 2001. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog. Neuropsychopharmacol. Biol. Psychiatry, 25(1), 283–299.
https://doi.org/10.1016/s0278-5846(00)00156-1
Wu, G., Feder, A., Wegener, G., Bailey, C., Saxena, S., Charney, D. et al. 2011. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin. Ther. Targets, 15(11), 1317–1331.
https://doi.org/10.1517/14728222.2011.628314
Xiao, H.-S., Huang, Q.-H., Zhang, F.-X., Bao, L., Lu, Y.-J., Guo, C. et al. 2002. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc. Natl. Acad. Sci. U. S. A., 99(12), 8360–8365.
https://doi.org/10.1073/pnas.122231899
Xu, X. J., Hökfelt, T., Bartfai, T. and Wiesenfeld-Hallin, Z. 2000. Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides, 34(3–4), 137–147.
https://doi.org/10.1054/npep.2000.0820
Xu, X. J., Hökfelt, T. and Wiesenfeld-Hallin, Z. 2010. Galanin and spinal pain mechanisms: past, present, and future. In Galanin. Experientia Supplementum (Hökfelt, T. ed.). Springer, Basel, 102, 39–50.
https://doi.org/10.1007/978-3-0346-0228-0_4
Xu, Z. Q., Shi, T. J. and Hökfelt, T. 1998. Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J. Comp. Neurol., 392(2), 227–251.
https://doi.org/10.1002/(SICI)1096-9861(19980309)392:2<227::AID-CNE6>3.0.CO;2-4
Yang, Y., Li, Y., Liu, B., Li, C., Liu, Z., Deng, J. et al. 2021. Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray. Proc. Natl. Acad. Sci. U. S. A., 118(24), e1922586118. https://doi.org/10.1073/pnas.1922586118
Yu, H., Usoskin, D., Nagi, S., Hu, Y., Kupari, J., Bouchatta, O. et al. 2023. Single-soma deep RNA sequencing of human DRG neurons reveals novel molecular and cellular mechanisms underlying somatosensation. bioRxiv, preprint.
https://doi.org/10.1101/2023.03.17.533207
Zhang, X., Ju, G., Elde, R. and Hökfelt, T. 1993. Effect of peripheral nerve cut on neuropeptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin. J. Neurocytol., 22(5), 342–381.
https://doi.org/10.1007/bf01195558
Zhong, W., Barde, S., Mitsios, N., Adori, C., Oksvold, P., von Feilitzen, K. et al. 2022. The neuropeptide landscape of human prefrontal cortex. Proc. Natl. Acad. Sci. U. S. A., 119(33), e2123146119.
https://doi.org/10.1073/pnas.2123146119
Zhu, S., Hu, X., Bennett, S., Charlesworth, O., Qin, S., Mai, Y. et al. Galanin family peptides: molecular structure, expression and roles in the neuroendocrine axis and in the spinal cord. Front. Endocrinol., 13, 1019943.
https://doi.org/10.3389/fendo.2022.1019943