ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
A comparative analysis of Fuzzy AHP and Fuzzy VIKOR methods for prioritization of the risk criteria of an autonomous vehicle system; pp. 116–123
PDF | https://doi.org/10.3176/proc.2024.2.04

Authors
Marmar Mehrparvar, Jüri Majak, Kristo Karjust
Abstract

In the current study, two widely used multi-­criteria decision­-making methods, the Fuzzy analytic hierarchy process (AHP) and the Fuzzy VIKOR method, have been implemented to prioritize the criteria of a multi­-criteria decision­-making problem. Herein, the case study is an autonomous vehicle, the TalTech iseAuto AV shuttle, developed at TalTech University. The criteria of the present problem are evaluated by experts, and after forming the pairwise matrices, these matrices are aggregated by the max­-min method with the arithmetic mean. Subsequently, in the case of Fuzzy AHP, by calculating the weights and normalizing them, the relative importance of each criterion is obtained, which leads to the ranking of the criteria. Moreover, in the case of the Fuzzy VIKOR method, the aggregated pairwise matrix is weighted and normalized. The ranking obtained from both methods is presented and compared. The advantages and disadvantages of the multi­-criteria decision­making methods Fuzzy AHP and VIKOR, featured for risk analysis of the autonomous vehicle systems, are discussed.

References

1. Jaanuska, L. and Hein, H. Delamination quantification by Haar wavelets and machine learning. Mech. Compos. Mater., 2022, 58, 249–260. 
https://doi.org/10.1007/s11029-022-10025-2  

2. Aydin, L., Artem, H. S. and Deveci, H. A. Single- and multiobjective optimizations of dimensionally stable composites using genetic algorithms. Mech. Compos. Mater., 2021, 57, 321–336. 
https://doi.org/10.1007/s11029-021-09957-y  

3. Barkanov, E., Akishin, P., Namsone, E., Auzins, J. and Morozovs, A. Optimization of pultrusion processes for an industrial application. Mech. Compos. Mater., 2021, 56, 697–712. 
https://doi.org/10.1007/s11029-021-09916-7  

4. Kers, J., Majak, J., Goljandin, D., Gregor, A., Malmstein, M. and Vilsaar, K. Extremes of apparent and tap densities of recovered GFRP filler materials. Compos. Struct., 2010, 92(9), 2097–2101. 
https://doi.org/10.1016/j.compstruct.2009.10.003  

5. Vinodh, S., Prasanna, M. and Hari Prakash, N. Integrated Fuzzy AHP–TOPSIS for selecting the best plastic recycling method: a case study. Appl. Math. Model., 2014, 38(19–20), 4662–4672. 
https://doi.org/10.1016/j.apm.2014.03.007  

6. Bakioglu, G. and Atahan, A. O. AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Appl. Soft Comput., 2021, 99, 106948. 
https://doi.org/10.1016/j.asoc.2020.106948  

7. Kuo, R. J., Lee, L. Y. and Hu, T.-L. Developing a supplier selection system through integrating fuzzy AHP and fuzzy DEA: a case study on an auto lighting system company in Taiwan. Prod. Plan. Control, 2010, 21(5), 468–484. 
https://doi.org/10.1080/09537280903458348  

8. Yazdani, M. and Graeml, F. R. VIKOR and its applications: a state-of-the-art survey. Int. J. Strateg. Decis. Sci., 2014, 5(2), 56–83. 
https://doi.org/10.4018/ijsds.2014040105  

9. Afolayan, A. H., Ojokoh, B. A. and Adetunmbi, A. O. Performance analysis of fuzzy analytic hierarchy process multi-criteria decision support models for contractor selection. Sci. Afr., 2020, 9, e00471. 
https://doi.org/10.1016/j.sciaf.2020.e00471

10. Zadeh, L. A. Fuzzy sets. Inf. Control, 1965, 8(3), 338–353. 
https://doi.org/10.1016/S0019-9958(65)90241-X  

11. Saaty, T. L. Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill International Book Co., New York, London, 1980.

12. Kaganski, S., Majak, J. and Karjust, K. Fuzzy AHP as a tool for prioritization of key performance indicators. Procedia CIRP, 2018, 72, 1227–1232. 
https://doi.org/10.1016/j.procir.2018.03.097  

13. Paavel, M., Karjust, K. and Majak, J. Development of a product lifecycle management model based on the fuzzy analytic hierarchy process. Proc. Estonian Acad. Sci., 2017, 66(3), 279–286. 
https://doi.org/10.3176/proc.2017.3.05  

14. Opricovic, S. Multicriteria optimization of civil engineering systems. PhD thesis. Faculty of Civil Engineering, Belgrade, 1998.

15. Peleckis, K. Application of the Fuzzy VIKOR method to assess concentration and its effects on competition in the energy sector. Energies, 2022, 15(4), 1349. 
https://doi.org/10.3390/en15041349  

16. Afful-Dadzie, E., Nabareseh, S. and Oplatkova, Z. K. Fuzzy VIKOR approach: evaluating quality of internet health information. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), Warsaw, Poland, 710 September 2014. IEEE, 2014, 183–190. 

17. Waas, D. V. and Suprapto, S. Combination of AHP method and VIKOR method for assesing Sunday school teacher. IJCCS, 2020, 14(1). 
https://doi.org/10.22146/ijccs.40533  

18. Musani, S. and Jemain, A. A. Ranking schools’ academic performance using a Fuzzy VIKOR.  J.  Phys: Conf. Ser., 2015, 622, 612036. 
https://doi.org/10.1088/1742-6596/622/1/012036  

19. Mat Rani, R. and Nadar, A. F. Supplier selection using Fuzzy AHP and Fuzzy Vikor for XYZ pharmaceutical manufacturing company. EDUCATUM J. Sci. Math. Technol., 2020, 7(1). 
https://doi.org/10.37134/ejsmt.vol7.1.2.2020  

20. Anojkumar, L., Ilangkumaran, M. and Sasirekha, V. Comparative analysis of MCDM methods for pipe material selection in sugar industry. Expert Syst. Appl., 2014, 41(6), 2964–2980. 
https://doi.org/10.1016/j.eswa.2013.10.028  

21. Opricovic, S. and Tzeng, G.-H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res., 2007, 178(2), 514–529. 
https://doi.org/10.1016/j.ejor.2006.01.020  

22. Papathanasiou, J. An example on the use and limitations of MCDA: the case of Fuzzy VIKOR. Examples and Counterexamples, 2021, 1
https://doi.org/10.1016/j.exco.2020.100001  

23. Ceballos, B., Lamata, M. T. and Pelta, D. A. A comparative analysis of multi-criteria decision-making methods. Prog. Artif. Intell., 2016, 5, 315–322. 
https://doi.org/10.1007/s13748-016-0093-1  

24. Ju, Y. and Wang, A. Extension of VIKOR method for multi-criteria group decision making problem with linguistic information. Appl. Math. Model., 2013, 37(5), 3112–3125. 
https://doi.org/10.1016/j.apm.2012.07.035  

25. Astrov, I., Udal, A., Pedai, A. and Sell, R. Simulink/MATLAB based comparison of neural and basic tracking control for an autonomous surface vessel for situation awareness applications. In Proceedings of the IEEE Joint 19th International Symposium on Computational Intelligence and Informatics and 7th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), Szeged, Hungary, 14–16 November 2019. IEEE, 2019, 000105–000110. 
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105230  

26. Sell, R. and Petritsenko, A. Early design and simulation toolkit for mobile robot platforms. Int. J. Prod. Dev., 2013, 18(2). 
https://doi.org/10.1504/IJPD.2013.053499  

27. Rassõlkin, A., Sell, R. and Leier, M. Development case study of the first Estonian self-driving car, ISEAUTO. Electr. Control Commun. Eng., 2018, 14(1).
https://doi.org/10.2478/ecce-2018-0009  

28. Pikner, H., Sell, R., Majak, J. and Karjust, K. Multi-layer cyber-physical control method for mobile robot safety systems. Proc. Estonian Acad. Sci., 2021, 70(4), 383–391. 
https://doi.org/10.3176/proc.2021.4.03  

29. Pikner, H., Sell, R., Majak, J. and Karjust, K. Safety system assessment case study of autonomous vehicle shuttle. Electronics, 2022, 11(7). 
https://doi.org/10.3390/electronics11071162  

Back to Issue