ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Coherent enterprise information modeling for 5G private network feasibility; pp. 100–107
PDF | https://doi.org/10.3176/proc.2024.2.01

Authors
Tanel Jairus, Riivo Pilvik, Kati Korbe Kaare, Arvi Sadam, Kristjan Kuhi
Abstract

In the era of Industry 4.0, the digital transformation of industrial systems necessitates advanced wireless communication solutions that are both agile and secure. Private 5G networks, characterized by their unparalleled bandwidth, reduced latency, and fortified security, have emerged as a beacon of innovation in this paradigm shift. This study explores the feasibility of deploying private 5G networks across diverse enterprises, underpinned by a robust methodological framework. Drawing from contemporary research, it is evident that while 5G promises transformative benefits for sectors like logistics, manufacturing, and autonomous vehicles, its adoption is riddled with challenges such as network oversaturation and frequency coordination. Analyzing 2006 companies, our findings reveal that only 103 enterprises align with the optimal criteria for private 5G network implementation, highlighting the intricate balance of spatial, economic, and regulatory considerations. This research not only offers a strategic roadmap for businesses and stakeholders but also positions private 5G networks as a pivotal tool for achieving operational excellence, enhanced data privacy, and seamless connectivity in the modern industrial landscape.

References

Aijaz, A. 2020. Private 5G: the future of industrial wireless. IEEE Ind. Electron. Mag.14(4), 136–145. 
https://doi.org/10.1109/MIE.2020.3004975

Alkhansa, R., Artail, H. and Gutierrez-Estevez, D. M. 2014. LTE-WiFi carrier aggregation for future 5G systems: a feasibility study and research challenges. Procedia Comput. Sci.34, 133–140. 
https://doi.org/10.1016/j.procs.2014.07.068

Aschenbrenner, D., Scharle, M. and Ludwig, S. 2022. FlexiCell: 5G location-based context-aware agile manufacturing. Procedia CIRP107, 1455–1460. 
https://doi.org/10.1016/j.procir.2022.05.174

Birutis, A. and Mykkeltveit, A. 2022. Practical jamming of a commercial 5G radio system at 3.6 GHz. Procedia Comput. Sci.205, 58–67. 
https://doi.org/10.1016/j.procs.2022.09.007

Carrascosa, M. and Bellalta, B. 2022. Cloud-gaming: analysis of Google Stadia traffic. Comput. Commun.188, 99–116. 
https://doi.org/10.1016/j.comcom.2022.03.006

Chen, H., Liu, J., Wang, J. and Xun, Y. 2023. Towards secure intra-vehicle communications in 5G advanced and beyond: vulnerabilities, attacks and countermeasures. Veh. Commun.39, 100548. 
https://doi.org/10.1016/j.vehcom.2022.100548

Condoluci, M., Dohler, M., Araniti, G., Molinaro, A. and Sachs, J. 2016. Enhanced radio access and data transmission procedures facilitating industry-compliant machine-type communications over LTE-based 5G networks. IEEE Wirel. Commun.23(1), 56–63.
https://doi.org/10.1109/MWC.2016.7422406

Frank, H., Colman-Meixner, C., Assis, K. D. R., Yan, S. and Simeonidou, D. 2022. Techno-economic analysis of 5G non-public network architectures. IEEE Access10, 70204–70218. 
https://doi.org/10.1109/ACCESS.2022.3187727

Garg, V. K. 2007. Wireless personal area networks: low rate and high rate. In Wireless Communications & Networking. Morgan Kaufmann, Burlington, 675–712. 
https://doi.org/10.1016/B978-012373580-5/50054-5

Härting, R.-C., Bühler, L., Winter, K. and Gugel, A. 2022. The threat of industrial espionage for SME in the age of digitalization. Procedia Comput. Sci.207, 2940–2949. 
https://doi.org/10.1016/j.procs.2022.09.352

Li, X., Dai, H.-N., Shukla, M. K., Li, D., Xu, H. and Imran, M. 2021. Friendly-jamming schemes to secure ultra-reliable and low-latency communications in 5G and beyond communications. Comput. Stand. Interfaces78, 103540. 
https://doi.org/10.1016/j.csi.2021.103540

Navarro, E. M., Álvarez, A. N. R. and Anguiano, F. I. S. 2022. A new telesurgery generation supported by 5G technology: benefits and future trends. Procedia Comput. Sci.200, 31–38. 
https://doi.org/10.1016/j.procs.2022.01.202

OpenStreetMap. https://planet.osm.org/ (accessed 2023-11-05).

Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M. et al. 2014. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag.52(5), 26–35.
https://doi.org/10.1109/MCOM.2014.6815890

Pandas. https://pandas.pydata.org/ (accessed 2023-11-05).

Peters, M. A. and Besley, T. 2021. 5G transformational advanced wireless futures. Educ. Philos. Theory53(9), 847–851. 
https://doi.org/10.1080/00131857.2019.1684802

Shi, Y., Han, Q., Shen, W. and Wang, X. 2021. A multi-layer collaboration framework for industrial parks with 5G vehicle-to-everything networks. Engineering,7(6), 818–831. 
https://doi.org/10.1016/j.eng.2020.12.021

Simsek, M., Aijaz, A., Dohler, M., Sachs, J. and Fettweis, G. 2016. 5G-enabled tactile internet. IEEE J. Sel. Areas Commun.34(3), 460–473. 
https://doi.org/10.1109/JSAC.2016.2525398

Skokowski, P., Kelner, J. M., Malon, K., Maślanka, K., Birutis, A., Vazquez, M. A. et al. 2022. Jamming and jamming mitigation for selected 5G military scenarios. Procedia Comput. Sci.205, 258–267. 
https://doi.org/10.1016/j.procs.2022.09.027

Back to Issue