The spreading rate of initially closely located water particles and passive drifters in the surface layer of the Gulf of Finland is studied using autonomous surface drifters. The average spreading rate increases with the increase in the time elapsed from the deployment, equivalently, with the increase in the distance between drifters. The typical spreading rate is about 200 m/day for separations below 0.5 km, 500 m/day for separations below 1 km and in the range of 0.5–3 km/day for separations in the range of 1–4 km. The spreading rate does not follow the Richardson law. The initial spreading, up to a distance of about 150 m, is governed by the power law d ~ t 0.27 whereas for larger separations the distance increases as d ~ t 2.5.
1. Kantha, L. M. and Clayson, C. A. Numerical Models of Oceans and Oceanic Processes. Academic Press, San Diego, San Francisco, 2000.
2. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erichsen, A., Funkquist, L., Inkala, A., Neelov, I. et al. Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Env. Res., 2010, 15, 453–479.
3. Griffa, A., Piterbarg, L. I., and Ozgokmen, T. Predictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J. Mar. Res., 2004, 62, 1–35.
http://dx.doi.org/10.1357/00222400460744609
4. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C. et al. Super-ensemble techniques: Application to surface drift prediction. Progr. Oceanogr., 2009, 82, 149–167.
http://dx.doi.org/10.1016/j.pocean.2009.06.002
5. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 156–165.
http://dx.doi.org/10.3176/proc.2010.2.15
6. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Env. Res., 2011, 16 (Suppl. A), 49–63.
7. Alenius, P., Nekrasov, A., and Myrberg, K. The baroclinic Rossby-radius in the Gulf of Finland. Cont. Shelf Res., 2003, 23, 563–573.
http://dx.doi.org/10.1016/S0278-4343(03)00004-9
9. Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., Andrejev, O., and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 2006, 70, 567–576.
http://dx.doi.org/10.1016/j.ecss.2006.06.010
10. Lilover, M.-J., Pavelson, J., and Kõuts, T. Wind forced currents over shallow Naissaar Bank in the Gulf of Finland. Boreal Env. Res., 2011, 16 (Suppl. A), 164–174.
11. Andrejev, O., Sokolov, A., Soomere, T., Värv, R., and Viikmäe, B. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J. Eng., 2010, 16, 187–210.
http://dx.doi.org/10.3176/eng.2010.3.01
12. Richardson, L. F. Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. A, 1926, 110, 709–737.
http://dx.doi.org/10.1098/rspa.1926.0043
13. Ollitrault, M., Gabillet, C., and Colin de Verdiere, A. Open ocean regimes of relative dispersion. J. Fluid Mech., 2005, 533, 381–407.
http://dx.doi.org/10.1017/S0022112005004556
15. Lumpkin, R. and Elipot, S. Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 2010, 115, Art. No. C12017.
http://dx.doi.org/10.1029/2010JC006338
16. Lin, J. T. Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atm. Sci., 1972, 29, 394–396.
http://dx.doi.org/10.1175/1520-0469(1972)029<0394:RDITEC>2.0.CO;2
17. Falkovich, G., Gawedzki, K., and Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys., 2001, 73, 913–975.
http://dx.doi.org/10.1103/RevModPhys.73.913
18. LaCasce, J. H. Statistics from Lagrangian observations. Progr. Oceanogr., 2008, 77, 1–29.
http://dx.doi.org/10.1016/j.pocean.2008.02.002
19. Salazar, J. P. L. C. and Collins, L. R. Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech., 2009, 41, 405–432.
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102224
20. Bec, J., Gawedzki, K., and Horvai, P. Multifractal clustering in compressible flows. Phys. Rev. Lett., 2004, 92, Art. No. 224501.
http://dx.doi.org/10.1103/PhysRevLett.92.224501
22. Cressman, J. R., Davoudi, J., Goldburg, W. I., and Schumacher, J. Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys., 2004, 6, Art. No. 53.
http://dx.doi.org/10.1088/1367-2630/6/1/053
24. Elken, J., Raudsepp, U., and Lips, U. On the estuarine transport reversal in deep layers of the Gulf of Finland. J. Sea Res., 2003, 49, 267–274.
http://dx.doi.org/10.1016/S1385-1101(03)00018-2
26. Andrejev, O., Myrberg, K., and Lundberg, P. A. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus, 2004, 56A, 548–558.
27. Lehmann, A. and Myrberg, K. Upwelling in the Baltic Sea – a review. J. Marine Syst., 2008, 74, S3–S12.
http://dx.doi.org/10.1016/j.jmarsys.2008.02.010
29. Andrejev, O., Soomere, T., Sokolov, A., and Myrberg, K. The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia, 2011, 53(1-TI), 309–334.
http://dx.doi.org/10.5697/oc.53-1-TI.309
30. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59, 156–165.
http://dx.doi.org/10.3176/proc.2010.2.15
31. Skvortsov, A., Jamriska, M., and DuBois, T. C. Scaling laws of passive tracer dispersion in the turbulent surface layer. Phys. Rev. E, 2010, 82, 5, Art. No. 056304.
http://dx.doi.org/10.1103/PhysRevE.82.056304
32. Döös, K. Inter-ocean exchange of water masses. J. Geophys. Res., 1995, 100, C13499–C13514.
http://dx.doi.org/10.1029/95JC00337
33. de Vries, P. and Döös, K. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atm. Oceanic. Technol., 2001, 18, 1092–1101.
http://dx.doi.org/10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2
34. Meier, H. E. M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci., 2007, 74, 610–627.
http://dx.doi.org/10.1016/j.ecss.2007.05.019
35. Funkquist, L. HIROMB, an operational eddy-resolving model for the Baltic Sea. Bull. Maritime Inst. Gdańsk, 2001, 28, 7–16.
36. Gästgifvars, M., Ambjörn, C., and Funkquist, L. Operational modelling of the trajectory and fate of spills in the Baltic Sea. In Proc. 25th Arctic and Marine Oil-spill Program (AMOP) Technical Seminar, Calgary, Canada, 2001. Environment Canada, 2002, 1115–1130.