ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Sustainable energy efficiency in aluminium parts industries utilizing waste heat and equivalent volume with energy management control system; pp. 29–42
PDF | https://doi.org/10.3176/proc.2024.1.04

Authors
Erkata Yandri, Suherman Suherman, Abraham Lomi, Roy Hendroko Setyobudi, Ratna Ariati, Pramudito Pramudito, Ronald Ronald, Yudithia Ardiani, Juris Burlakovs, Muhammad Zahoor, Luqman Ali Shah, Ahmad Fauzi, Rusli Tonda, Iswahyudi Iswahyudi
Abstract

The global aluminium industry faces a serious challenge in reducing greenhouse gas emissions as the demand for aluminium continues to increase. The aluminium industry has a responsibility to streamline its energy consumption, especially in the production process. There have been many studies discussing energy consumption performance in the industry. However, most of them only discuss energy saving partially, without involving energy consumption with various items produced. This paper proposes an energy savings measurement in the manufacturing industry. An energy baseline consumed per unit volume has been developed using the equivalent volume method with an energy management control system (EMCS). The study takes a case example from the automotive–aluminium component industry. The steps taken in the study are: examining the production process, converting the production volume to equivalent, calculating the energy consumption ratio, developing an energy baseline, simulating the savings performance, and then proposing an EMCS with key performance indicators (KPI) for sustainability. The results show that the development of a baseline using the ratio of energy and an equivalent volume of production gives a better data correlation with an R2 value close to one. From the baseline, the best­-demonstrated performance (BDP) can be used as a reference to set energy goals. Furthermore, the data and the deviant deleted have the same baseline value. They differ in energy reduction goal percentages. The practical application of this study is not only in the manufacturing industry but in other industries as well, such as building management. This study contributes to energy savings achieved with EMCS.

References

1. Gaulin, N. and Le Billon, P. Climate change and fossil fuel production cuts: assessing global supply-side constraints and policy implications. Clim. Policy, 2020, 20(8), 888–901. 
https://doi.org/10.1080/14693062.2020.1725409

2. British Petroleum. Energy Outlook 2020. 
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf  (accessed 2023-12-10).

3. Gielen, D., Boshell, F., Saygin, D., Bazilian. M. D., Wagner, N. and Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev., 2019, 24, 38–50. 
https://doi.org/10.1016/j.esr.2019.01.006

4. REN21. Renewables 2020. Global Status Report. 
https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed 2023-12-10).

5. IEA. Global Energy Review 2020. 
https://doi.org/10.1787/a60abbf2-en (accessed 2023-12-10).

6. Akram, R., Chen, F., Khalid, F., Ye, Z. and Majeed, M. T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: evidence from developing countries. J. Clean. Prod., 2020, 247, 119122. 
https://doi.org/10.1016/j.jclepro.2019.119122  

7. Abdelaziz, E. A., Saidur, R. and Mekhilef S. A review on energy saving strategies in industrial sector. Renew. Sust. Energ. Rev., 2011, 15(1), 150–168. 
https://doi.org/10.1016/j.rser.2010.09.003  

8. Firth, A., Zhang, B. and Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy, 2019, 235, 1314–1334. 
https://doi.org/10.1016/j.apenergy.2018.10.102  

9. Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. and Chiolerio, A. Waste heat to power: technologies, current applications, and future potential. Energy Technol., 2020, 8(11), 1–22. 
https://doi.org/10.1002/ente.202000413  

10. Zhou, Z., Yao, B., Xu, W. and Wang. L. Condition monitoring towards energy-efficient manufacturing: a re­view. Int. J. Adv. Manuf. Technol., 2017, 91, 3395–3415. 
https://doi.org/10.1007/s00170-017-0014-x  

11. Egilegor, B., Jouhara, H., Zuazua, J., Al-Mansour, F., Plesnik, K., Montorsi, L. et al. ETEKINA: analysis of the potential for waste heat recovery in three sectors: aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector. Int. J. Thermofluids, 2020, 1–2, 100002. 
https://doi.org/10.1016/j.ijft.2019.100002  

12. Su, Z., Zhang, M., Xu, P., Zhao, Z., Wang, Z., Huang, H. et al. Opportunities and strategies for multigrade waste heat utilization in various industries: a recent review. Energy Convers. Manag., 2021, 229, 113769. 
https://doi.org/10.1016/j.enconman.2020.113769  

13. Wang, R. Q., Jiang, L., Wang, Y. D. and Roskilly, A. P. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: a review. J. Clean. Prod., 2020, 274, 122997. 
https://doi.org/10.1016/j.jclepro.2020.122997  

14. Loni, R., Najafi, G., Bellos, E., Rajaee, F., Said, Z. and Mazlan, M. A review of industrial waste heat recovery system for power generation with organic rankine cycle: recent challenges and future outlook. J. Clean. Prod., 2021, 287, 125070. 
https://doi.org/10.1016/j.jclepro.2020.125070  

15. Araiz, M., Casi, Á., Catalán, L., Martínez, Á. and Astrain, D. Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power out­put analysis. Energy Convers. Manag., 2020, 205, 112376. 
https://doi.org/10.1016/j.enconman.2019.112376  

16. Gupta, A. and Basu, B. Sustainable primary aluminium production: technology status and future opportunities. Trans. Indian Inst. Met., 2019, 72, 2135–2150. 
https://doi.org/10.1007/s12666-019-01699-9  

17. Haraldsson, J. and Johansson, M. T. Review of measures for improved energy efficiency in production-related processes in the aluminium industry – from electrolysis to recycling. Renew. Sust. Energ. Rev., 2018, 93, 525–548. 
https://doi.org/10.1016/j.rser.2018.05.043  

18. Kluczek, A. and Olszewski, P. Energy audits in industrial processes. J. Clean. Prod. 2017, 142, 3437–3453. 
https://doi.org/10.1016/j.jclepro.2016.10.123

19. Sa, A., Thollander, P. and Cagno, E. Assessing the driving factors for energy management program adoption. Renew. Sust. Energ. Rev., 2017, 74, 538–547. 
https://doi.org/10.1016/j.rser.2017.02.061  

20. Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Anne, O., Susanto. H. et al. Implementation of walk-through audits for designing energy management system: a first step towards an efficient campus. IOP Conf. Ser. Earth Environ. Sci. 2020, 490, 012005. 
https://doi.org/10.1088/1755-1315/490/1/012005  

21. Schulze, M., Heidenreich, S. and Spieth, P. The impact of energy management control systems on energy efficiency in the German manufacturing industry. J. Ind. Ecol., 2018, 22(4), 813–826. 
https://doi.org/10.1111/jiec.12625  

22. Johansson, M. T. and Thollander, P. A review of barriers to and driving forces for improved energy efficiency in Swedish industry – recommendations for successful in-house energy management. Renew. Sust. Energ. Rev., 2018, 82, 618–28. 
https://doi.org/10.1016/j.rser.2017.09.052  

23. Cai, W., Lai, K., Liu, C., Wei, F., Ma, M., Jia, S. et al. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci. Total Environ., 2019, 665, 23–32. 
https://doi.org/10.1016/j.scitotenv.2019.02.069  

24. Andrei, M., Thollander, P. and Sannö, A. Knowledge demands for energy management in manufacturing industry – a systematic literature review. Renew. Sust. Energ. Rev., 2022, 159, 112168. 
https://doi.org/10.1016/j.rser.2022.112168  

25. Mawson, V. J. and Hughes, B. R. The development of modelling tools to improve energy efficiency in manu­facturing processes and systems. J. Manuf. Syst., 2019, 51, 95–105. 
https://doi.org/10.1016/j.jmsy.2019.04.008  

26. Edgar, T. F. and Pistikopoulos, E. N. Smart manufacturing and energy systems. Comput. Chem. Eng., 2018, 114, 130–144. 
https://doi.org/10.1016/j.compchemeng.2017.10.027  

27. Zhang, Y., Ma, S., Yang H., Lv, J. and Liu Y. A big data driven analytical framework for energy-intensive manu­facturing industries. J. Clean. Prod., 2018, 197(1), 57–72. 
https://doi.org/10.1016/j.jclepro.2018.06.170

28. Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A. and Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sust. Energ. Rev., 2017, 70, 1298–1322. 
https://doi.org/10.1016/j.rser.2016.12.030  

29. Zsebik, A. and Novák, D. ISO 50001 – energy planning and monitoring tools and examples. Energy Eng., 2018, 115(6), 46–61. 
https://doi.org/10.1080/01998595.2018.12027901  

30. Lawrence, A., Thollander, P., Andrei, M. and Karlsson, M. Specific energy consumption/use (SEC) in energy manage­ment for improving energy efficiency in industry: meaning, usage and differences. Energies, 2019, 12(2), 247. 
https://doi.org/10.3390/en12020247  

31. Andersson, E. and Tollander, P. Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Rev., 2019, 24, 229–235. 
https://doi.org/10.1016/j.esr.2019.03.004  

32. Wen, X., Cao, H., Hon, B., Chen, E. and Li, H. Energy value mapping: a novel lean method to integrate energy efficiency into production management. Energy, 2021, 217, 119353. 
https://doi.org/10.1016/j.energy.2020.119353  

33. Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U. and Micale, G. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng., 2018, 138, 207–216. 
https://doi.org/10.1016/j.applthermaleng.2018.04.043  

34. Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H. et al. Technical design of aluminium scrap processing machines by utilization of direct exhaust air using conveyor drying system. Proc. Estonian Acad. Sci., 2022, 71(2), 178–185. 
https://doi.org/10.3176/proc.2022.2.01  

35. Dokl, M., Gomilšek, R., Čuček, L., Abikoye, B. and Kravanja, Z. Maximizing the power output and net present value of organic Rankine cycle: application to aluminium industry. Energy, 2022, 239, 122620. 
https://doi.org/10.1016/j.energy.2021.122620  

36. Brough, D. and Jouhara H. The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids, 2020, 1–2, 100007. 
https://doi.org/10.1016/j.ijft.2019.100007  

37. Haraldsson, J., Johnsson, S., Thollander, P. and Wallén, M. Taxonomy, saving potentials and key performance indicators for energy end‐use and greenhouse gas emissions in the aluminium industry and aluminium casting foundries. Energies, 2021, 14(12), 3571. 
https://doi.org/10.3390/en14123571  

38. Soo, V. K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. and Duflo, J. R. Sustainable aluminium recycling of end-of-life products: a joining techniques perspective. J. Clean. Prod., 2018, 178, 119–132. 
https://doi.org/10.1016/j.jclepro.2017.12.235  

39. Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Susanto, H., Abdullah, K. et al. Potential energy efficiency and solar energy applications in a small industrial laundry: a practical study of energy audit. E3S Web Conf., 2020, 190, 00008. 
https://doi.org/10.1051/e3sconf/202019000008  

40. Minister of Energy and Mineral Resources I. Minister of Energy and Mineral Resources Regulation No. 28, 2016 (in Indonesian). 
https://jdih.esdm.go.id/peraturan/Permen%20ESDM%20No.%2028%20Th%202016.pdf  (accessed 2023-12-10).

41. Kelchevskaya, N. R., Shirinkina, E. V. and Atlasov, I. V. Assessing energy efficiency factors in industrial companies. IOP Conf. Ser. Mater. Sci. Eng., 2020, 862, 042001. 
https://doi.org/10.1088/1757-899X/862/4/042001  

42. Purba, W., Yandri, E., Setyobudi, R. H., Susanto, H., Wahono, S. K, Siregar, K. et al. Potentials of gas emission reduction (GHG) by the glass sheet industry through energy conservation. E3S Web Conf., 2021, 226, 00047. 
https://doi.org/10.1051/e3sconf/202122600047

43. Limpraptono, F. Y., Nurcahyo, E., Ashari, M. I., Yandri, E. and Jani, Y. Design of power monitoring and electrical control systems to support energy conservation. Proc. Pakistan Acad. Sci., 2021, 58(S), 1–7. 
http://doi.org/10.53560/PPASA(58-sp1)726  

44. Menghi, R., Papetti, A., Germani, M. and Marconi, M. Energy efficiency of manufacturing systems: a review of energy assessment methods and tools. J. Clean. Prod., 2019, 240, 118276. 
https://doi.org/10.1016/j.jclepro.2019.118276  

45. Yandri, E., Setyobudi, R. H., Susanto, H., Abdullah, K., Nugroho, Y. A., Wahono, S. K. et al. Conceptualizing Indonesia’s ICT-based energy security tracking system with detailed indicators from smart city extension. E3S Web Conf., 2020, 188, 00007. 
https://doi.org/10.1051/e3sconf/202018800007  

46. Novianto, B., Abdullah, K., Uyun, A. S, Yandri, E., Nur, S. M., Susanto, H. et al. Smart micro-grid performance using renewable energy. E3S Web Conf., 2020, 188, 00005. 
https://doi.org/10.1051/e3sconf/202018800005

47. Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L. et al. From big data to smart energy services: an application for intelligent energy management. Future Gener. Comput. Syst., 2020, 110, 572–586. 
https://doi.org/10.1016/j.future.2018.04.062

48. Cui, Y., Kara, S. and Chan, K. C. Manufacturing big data ecosystem: a systematic literature review. Robot. Comput. Integr. Manuf., 2020, 62, 101861. 
https://doi.org/10.1016/j.rcim.2019.101861

49. Javied, T., Huprich, S. and Franke, J. Cloud based energy management system compatible with the industry 4.0 requirements. IFAC-PapersOnLine, 2019, 52(10), 171–175. 
https://doi.org/10.1016/j.ifacol.2019.10.018

50. AL-Jumaili, A. H. A., Al Mashhadany, Y. I., Sulaiman, R. and Alyasseri, Z. A. A. A conceptual and systematics for intelligent power management system-based cloud computing: prospects, and challenges. Appl. Sci., 2021, 11(21), 9820. 
https://doi.org/10.3390/app11219820  

51. Rudationo, C. B., Novianto, B., Yandri, E., Susanto, H., Setyobudi, R. H., Uyun, A. S. et al. Techno-economic analysis of rooftop photovoltaic system (RPVS) using thin-frameless solar panels for household customers in Indonesia. Proc. Pakistan Acad. Sci., 2021, 58(S), 131–139. 
https://doi.org/10.53560/PPASA(58-SP1)750

52. Ayodele, T. R., Ogunjuyigbe, A. S. O. and Nwakanma, K. C. Solar energy harvesting on building’s rooftops: a case of a Nigeria cosmopolitan city. Renew. Energy Focus, 2021, 38, 57–70. 
https://doi.org/10.1016/j.ref.2021.06.001  

53. Setyobudi, R. H., Yandri, E., Atoum, M. F. M., Nur, S. M., Zekker, I., Idroes, R. et al. Healthy-smart concept as standard design of kitchen waste biogas digester for urban house­holds. Jordan J. Biol. Sci., 2021, 14(3), 613–620. 
https://doi.org/10.54319/jjbs/140331   

54. Abdullah, K., Uyun, A. S., Soegeng, S. R., Suherman, E., Susanto, H., Setyobudi, R. H. et al. Renewable energy technologies for economic development. E3S Web Conf., 2020, 188, 00016. 
https://doi.org/10.1051/e3sconf/202018800016

55. Burlakovs, J., Vincevica-Gaile, Z., Bisters, V., Hogland, W., Kriipsalu, M., Zekker, I. et al. Application of anaerobic digestion for biogas and methane production from fresh beach-cast biomass. In Proceedings of EAGE GET 2022 – 3rd EAGE Global Energy Transition, The Hague, Netherlands. EAGE, 2022, 1–5. 
https://doi.org/10.3997/2214-4609.202221028

56. Zhao, J., Ma, L., Zayed, M. E., Elsheikh, A. H., Li, W., Yan, Q. et al. Industrial reheating furnaces: a review of energy efficiency assessments, waste heat recovery poten­tials, heating process characteristics and perspectives for steel industry. Process Saf. Environ. Prot., 2021, 147, 1209–1228. 
https://doi.org/10.1016/j.psep.2021.01.045

Back to Issue