1. Grünewald, S. Performance-Based Design of Self-Compacting Fibre Reinforced Concrete. PhD thesis, Technische Universiteit Delft, 2004.
2. Lappa, E. S. High Strength Fibre Reinforced Concrete: Static and Fatigue Behaviour in Bending. PhD thesis, Technische Universiteit Delft, 2007.
3. Laranjeira de Oliveira, F. Design-Oriented Constitutive Model for Steel Fiber Reinforced Concrete. PhD thesis, Universitat Politecnica de Catalunya, 2010.
4. Papenfuss, C., Böhme, T., Herrmann, H., Muschik, W., and Verhás, J. Dynamics of the size and orientation distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equilib. Thermodyn., 2007, 32(2), 1–14.
5. Muschik, W., Papenfuss, C., and Ehrentraut, H. Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universität Berlin, 1996.
6. Papenfuss, C., Ván, P., and Muschik, W. Mesoscopic theory of microcracks. Arch. Mech., 2003, 55(5–6), 481–499.
7. Muschik, W., Ehrentraut, H., and Papenfuss, C. Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J. Non-Equilib. Thermodyn., 2000, 25, 179–197.
8. Jankun-kelly, T. J. and Mehta, K. Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. In IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006)}. 2006, 1197–1204.
9. Alts, T. Thermodynamik elastischer Körper mit thermo-kinematischen Zwangsbedingungen: fadenverstärkte Materialien. Habilitation, TU Berlin, Fachbereich 9, 1979 (in German; Engl. translation of the title: Thermodynamics of elastic bodies with thermo-kinetic constraints: fibre reinforced materials).