ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The effect of halide ions on nickel corrosion in perchloric acid solutions; pp. 184–192
PDF | doi: 10.3176/proc.2011.3.07

Authors
Sixten Hinnov, Jüri Tamm
Abstract
A comparative study of the effect of halide anions on the corrosion of mechanically and chemically polished nickel in perchloric acid solutions was carried out. Perchloric acid was chosen for the reference as perchlorate anion is one of the least adsorbed anions on nickel and this property allows examining adsorption of halogenide anions down to very low concentrations. It was established that in 0.1 M perchloric acid so low concentration of halogenides as 1 x 10–5 M has significant influence on nickel corrosion. Adsorption of halide ions depends remarkably on the energetic properties of the nickel surface. This effect was the most pronounced in the case of chloride ions, which essentially accelerated the corrosion of mechanically polished electrodes but had only a weak effect on chemically polished electrodes.
References

  1. Marcus, P. Corrosion Mechanisms in Theory and Practice. Marcel Dekker, New York, 2002.
doi:10.1201/9780203909188

  2. Mansfeld, F. Corrosion Mechanisms. Marcel Dekker Inc., New York, 1987.

  3. Schweitzer, P. A. Metallic Materials: Physical, Mech­anical, and Corrosion Properties. Corrosion Technol­ogy Series, Book 19. Marcel Dekker, New York, 2003.
doi:10.1201/9780203912423

  4. Bockris, J. O’M. and Khan, S. U. M. Surface Electro­chemistry: A Molecular Level Approach. Plenum Press, New York, London, 1993.

  5. Bockris, J. O’M. and Reddy, A. K. N. Modern Electro­chemistry 2B. Second edition. Kluwer Academic/ Plenum Publishers, 2000.

  6. Rüetschi, P. and Delahay, P. Hydrogen overvoltage and electrode material. A theoretical analysis. J. Chem. Phys., 1955, 23, 195–199.
doi:10.1063/1.1740527

  7. Crobu, M., Scorciapino, A., Elsner, B., and Rossi, A. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys. Electrochim. Acta, 2008, 53, 3364–3370.
doi:10.1016/j.electacta.2007.11.071

  8. Brass, A. M. and Chene, J. Influence of deformation on the hydrogen behavior in iron and nickel base alloys: a review of experimental data. Mat. Sci. Eng., 1998, A242, 210–221.

  9. Corrosion and Its Effects, http://www.emersonprocess.com/ Rosemount/document/pds/corrode.pdf (visited 20-06-2010).

10. Bockris, J. O’M., White, R. E., and Conway, B. E. Modern Aspects of Electrochemistry. Plenum, New York and London, 1996.

11. Vetter, K. J. Electrochemical Kinetics: Theoretical and Experi­mental Aspects. Academic Press, New York, 1967.

12. Postlethwaite, J. and Freese, L. B. Effect of halide addi­tions on anodic behavior of nickel in sulfuric acid solutions. Corrosion, 1967, 123, 109–114.

13. Abd El Rehim, S. S., Abd El Wahaab, S. M., and Abdel Maguid, E. A. Electrochemical behaviour of nickel anode in H2SO4 solutions and the effect of halide ions. Mat. Corr., 1986, 37, 550–555.
doi:10.1002/maco.19860371006

14. Burstein, G. and Wright, G. The anodic dissolution of nickel-II. Bromide and iodide electrolytes. Electro­chim. Acta, 1976, 21, 311–314.
doi:10.1016/0013-4686(76)80025-4

15. Said, F., Souissi, N., Dermaj, A., Hajjaji, N., Triki, E., and Srhiri, A. Effect of (R+,X) salts addition on nickel corrosion in 1M sulphuric acid medium. Mat. Corr., 2005, 56, 619–623.
doi:10.1002/maco.200503863

16. Real, S. G., Barbosa, M. R., Vilche, J. R., and Arvia, A. J. Influence of chloride concentration on the active dissolution and passivation of nickel electrodes in acid sulphate solutions. J. Electrochem. Soc., 1990, 137, 1696–1702.
doi:10.1149/1.2086772

17. Abd El Aal, E. E. and Abd El Haleem, S. M. The influence of halide ions on the anodic behavior of nickel in borate solutions. Chem. Eng. Technol., 2005, 28, 1158–1165.
doi:10.1002/ceat.200500146

18. Abdallah, M. and El-Etre, A. Y. Corrosion inhibition of nickel in sulphuric acid using tween surfactants. Port. Electrochim. Acta, 2003, 21, 315–326.
doi:10.4152/pea.200304315

19. http://corrosion-doctors.org/Allergies/nickelallergy.htm (visited 20-06-2010).

20. http://www.mayoclinic.com/health/nickel-allergy/ds00826 (visited 20-06-2010).

21. http://www.health-directories.com/allergynickel.html (visited 20-06-2010).

22. Tamm, J. and Tamm, L. The kinetics of the hydrogen evolution reaction at nickel electrodes. In Research in Chemical Kinetics (Compton, R. G. and Hancock, G., eds). 3. Elsevier, Amsterdam, London, New York, Oxford, Shannon, Tokyo, 1995, 215–262.

23. Nakamura, M., Ikemiya, N., Iwasaki, A., Suzuki, Y., and Ito, M. Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes. J. Electroan. Chem., 2004, 566, 385–391.
doi:10.1016/j.jelechem.2003.11.050

24. Scherer, J., Ocko, B. M., and Magnussen, O. M. Structure, dissolution, and passivation of Ni(111) electrodes in sulphuric acid solution: an in situ STM, X-ray scatter­ing, and electrochemical study. Electrochim. Acta, 2003, 48, 1169–1191.

25. Burstein, G. and Wright, G. The anodic dissolution of nickel-I. Perchlorate and fluoride electrolytes. Electro­chim. Acta, 1975, 20, 95–99.
doi:10.1016/0013-4686(75)85049-3

26. Tamm, J., Tamm, L., and Arold, J. Cathodic hydrogen evolution on nickel in acidic environment. Russ. J. Electrochem., 2004, 40, 1343–1347.
doi:10.1023/B:RUEL.0000048647.12787.bb
Back to Issue