ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Ford lemma for topological *-algebras; pp. 69–80
PDF | doi: 10.3176/proc.2011.2.01

Authors
Mart Abel, Mati Abel
Abstract
Several analogies of Ford lemma for topological algebras (in particular, for topological *-algebras) are proved (without using projective limits). Topological *-algebras, in which a self-adjoint element a with spA(a (0,) has a self-adjoint square root b with spA(a (0,) and spA(h1 + … + hn [0,), if spA(hk [0,) where hk are self-adjoint elements for each k  {1, …, n}, are described.
References

  1. Abel, Mart. Structure of Gelfand-Mazur Algebras. Dissertation, University of Tartu, Tartu, 2003. Dissertationes Mathematicae Universitatis Tartuensis 31. Tartu University Press, Tartu, 2003.

  2. Abel, Mati. Gel’fand-Mazur algebras. In Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON, 1994). Pitman Res. Notes Math. Ser. 316. Longman Sci. Tech., Harlow, 1994, 116–129.

  3. Abel, Mati. Advertive topological algebras. In General Topological Algebras (Tartu, 1999). Math. Stud. (Tartu), 1. Est. Math. Soc., Tartu, 2001, 14–24.

  4. Abel, Mati. Descriptions of the topological radical in topological algebras. In General Topological Algebras (Tartu, 1999). Math. Stud. (Tartu), 1. Est. Math. Soc., Tartu, 2001, 25–31.

  5. Abel, Mati. Inductive limits of Gelfand-Mazur algebras. Int. J. Pure Appl. Math., 2004, 16(3), 363–378.

  6. Abel, Mati. Topological algebras with pseudoconvexly bounded elements. In Topological Algebras, Their Applications, and Related Topics. Banach Center Publ. 67, Polish Acad. Sci., Warsaw, 2005, 21–33.

  7. Abel, Mati. Structure of locally idempotent algebras. Banach J. Math. Anal., 2007, 1(2), 195–207.

  8. Abel, Mati and Kokk, A. Locally pseudoconvex Gel’fand-Mazur algebras. Eesti NSV Tead. Akad. Toim. Füüs.-Mat., 1988, 37, 377–386 (in Russian).

  9. Abel, Mati and Żelazko, W. Topologically invertible elements and topological spectrum. Bull. Pol. Acad. Sci. Math., 2006, 54(3–4), 257–271.
doi:10.4064/ba54-3-7

10. Ansari-Piri, E. and Zohri, A. The nth roots and the quasi square roots in complete metrizable fundamental topological algebras. Far East J. Math. Sci. (FJMS), 2008, 28(3), 695–699.

11. Balachandran, V. K. Topological Algebras. North-Holland Mathematics Studies, 185. North-Holland Publishing Co., Amsterdam, 2000.

12. Beckensein, E., Narici, L., and Suffel, Ch. Topological Algebras. North-Holland Mathematics Studies, Vol. 24. Notas de Matemática, No. 60. [Mathematical Notes, No. 60] North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977.

13. Bonsall, F. F. and Duncan, J. Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer-Verlag, New York–Heidelberg, 1973.

14. Chabboun, M. and El Kinani, A. Calcul fonctionnel holomorphe dans les algébres localement p-convexes. Rend. Circ. Mat. Palermo (2), 2005, 54(2), 217–233.

15. Chabboun, M. and El Kinani, A. Calcul fonctionnel holomorphe dans les algébres localement p-convexes. Bull. Greek Math. Soc., 2006, 52, 77–90.

16. El Kinani, A. A note on harmonic calculus in m-convex algebras. Rend. Istit. Mat. Univ. Trieste, 2001, 33(1–2), 105–112 (2002).

17. El Kinani, A. On harmonic functions operating in locally m-pseudoconvex algebras. Bull. Belg. Math. Soc. Simon Stevin, 2002, 9(3), 447–454.

18. El Kinani, A. and Ifzarne, A. Calcul harmonique dans les algébres p-Banach involutives et applications. Bull. Belg. Math. Soc. Simon Stevin, 2001, 8(4), 685–697.

19. El Kinani, A., Oubbi, L., and Oudadess, M. Spectral and boundedness radii in locally convex algebras. Georgian Math. J., 1998, 5(3), 233–241.
doi:10.1023/B:GEOR.0000008122.00320.f9

20. Ford, J. W. M. Subalgebras of Banach Algebras Generated by Semigroups. Thesis, Univ. of Newcastle on Tune, 1966.

21. Ford, J. W. M. A square root lemma for Banach *-algebras. J. London Math. Soc., 1967, 42, 521–522.
doi:10.1112/jlms/s1-42.1.521

22. Fragoulopoulou, M. Topological Algebras with Involution. North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005.

23. Hille, E. and Phillips, R. S. Functional Analysis and Semi-Groups. Rev. edn. American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence, R. I., 1957.

24. Hogbe-Nlend, H. Bornologies and Functional Analysis. Introductory Course on the Theory of Duality Topology-Bornology and Its Use in Functional Analysis. North-Holland Mathematics Studies, Vol. 26. Notas de Matemática, No. 62 [Notes on Mathematics, No. 62]. North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977.

25. Husain, T. Multiplicative Functionals on Topological Algebras. Research Notes in Mathematics, 85. Pitman (Advanced Publishing Program), Boston, MA, 1983.

26. Husain, T. and Ringelhof, R. Representations of MQ*-algebras. Math. Ann., 1969, 180, 297–306.
doi:10.1007/BF01351882

27. Jarchow, H. Locally Convex Spaces. Mathematische Leitfäden [Mathematical Textbooks]. B. G. Teubner, Stuttgart, 1981.

28. Luha, K. Topological invertibility in topological algebras. In Application of Topology in Algebra and Differential Geometry (Tartu, 1991). Tartu Ülik. Toim., 1992, 940, 71–74.

29. Mallios, M. Topological Algebras. Selected Topics. North-Holland Mathematics Studies, 124. Notas de Matemįtica, 109. North-Holland Publishing Co., Amsterdam, 1986.

30. Michael, E. A. Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, No. 11.

31. Oubbi, L. Further radii in topological algebras. Bull. Belg. Math. Soc. Simon Stevin, 2002, 9(2), 279–292.

32. Oubbi, L. A Kaplansky-Meyer theorem for subalgebras. Bull. Belg. Math. Soc. Simon Stevin, 2009, 16(2), 305–312.

33. Palmer, Th. W. Banach Algebras and the General Theory of *-Algebras. Vol. I. Algebras and Banach Algebras. Encyclopedia of Mathematics and its Applications, 49. Cambridge University Press, Cambridge, 1994.

34. Palmer, Th. W. Banach Algebras and the General Theory of *-Algebras}. Vol. 2. *-Algebras. Encyclopedia of Mathematics and its Applications, 79. Cambridge University Press, Cambridge, 2001.

35. Powell, J. D. Representations of locally convex *-algebras. Proc. Amer. Math. Soc., 1974, 44, 341–346.
doi:10.2307/2040434

36. Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I. Integrals and Series. Elementary Functions. Nauka, Moscow, 1981 (in Russian).

37. Rickart, C. E. General Theory of Banach Algebras. D. van Nostrand Co., Inc., Princeton, N.J.–Toronto–London–New York, 1960.

38. Štĕrbová, D. Square roots and quasi-square roots in locally multiplicatively convex algebras. Sb. Prací Přírodověd. Fak. Univ. Palackého v Olomouci Mat., 1980, 19, 103–110.

39. Štĕrbová, D. Square roots of elements with an unbounded spectrum. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 1984, 23, 103–106.

40. Williamson, J. H. On topologising the field C(t). Proc. Amer. Math. Soc., 1954, 5, 729–734.
doi:10.1090/S0002-9939-1954-0063574-0

41. Yood, B. Banach Algebras – An Introduction. Carleton-Ottawa Math. Lecture Notes Series 9. Carleton Univ. Press, Carleton–Ottawa, 1988.

42. Żelazko, W. Selected Topics in Topological Algebras. Lectures 1969/1970. Lecture Notes Series, No. 31. Matematisk Institut, Aarhus Universitet, Aarhus, 1971.
Back to Issue