1. Abel, U. The complete asymptotic expansion for the Meyer-König and Zeller operators. J. Math. Anal. Appl., 1997, 208, 109–119.
doi:10.1006/jmaa.1997.5295
2. Adell, J. A. and de la Cal, J. Bernstein-type operators diminish the φ-variation. Constr. Approx., 1996, 12, 489–507.
doi:10.1007/s003659900027
3. Agratini, O. On the variation detracting property of a class of operators. Appl. Math. Lett., 2006, 19, 1261–1264.
doi:10.1016/j.aml.2005.12.007
4. Bardaro, C., Butzer, P. L., Stens, R. L., and Vinti, G. Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis (Munich), 2003, 23(4), 299–340.
5. Cheney, E. W. and Sharma, A. Bernstein power series. Canad. J. Math., 1964, 16, 241–253.
doi:10.4153/CJM-1964-023-1
6. Meyer-König, W. and Zeller, K. Bernsteinische Potenzreihen. Studia Math., 1960, 19, 89–94.
7. Musielak, J. and Orlicz, W. On generalized variation I. Studia Math., 1959, 18, 11–41.
8. Radu, C. Variation detracting property of the Bézier type operators. Facta Universitatis (Niš), Ser. Math. Inform., 2008, 23, 23–28.
9. Trigub, R. M. and Belinsky, E. S. Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht, 2004.
10. Young, L. C. Sur une généralisation de la notion de variation de puissance pième bornée au sens de N. Wiener, et sur la convergence des séries de Fourier. C. R. Acad. Sci. Paris, 1937, 204(7), 470–472.