ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Calculating the output signal parameters of a lactose bienzymatic biosensing system from the transient phase response; pp. 136–140
PDF | doi: 10.3176/proc.2011.2.08

Authors
Artur Gornischeff, Toonika Rinken
Abstract
We constructed for the determination of lactose a bienzymatic biosensing system based on a fibre-optical oxygen sensor and two enzymes – b-galactosidase (β-gal, from Aspergillus oryzae, Sigma Aldrich, EC 3.2.1.23) and glucose oxidase (GOD, from A. niger, Sigma Aldrich, EC 1.1.3.4) and analysed how the calculation of biosensor output signal parameters, used for the calibration of lactose biosensors, is influenced by the data collection period during the transient phase of the signal rising in case no preliminary incubation period with β-gal was applied. The calculation of reaction steady state and kinetic parameters from the biosensor signal revealed that longer data collection periods resulted in more accurate biosensor calibration curves with bigger slopes, while in case of slower reactions the calculated reaction parameters had their maximal values already if data were collected for 600 seconds. For reactions where enzyme concentrations were higher (0.027–0.071 IU/mL β-gal and 2.03–5.33 IU/mL GOD), the steady state signal was not achieved even within 1 hour from the initiation of the reaction and the calculated reaction parameters continued to change. Although the sensor signal was decreasing continuously, the reaction parameters calculated from the transient phase data were suitable for biosensor calibration if the data of at least 500 seconds were taken into consideration.
References

  1. Newburg, D. S. and Neubauer, S. H. Carbohydrates in milks: analysis, quantities, and significance. In Hand­book of Milk Composition (Robert, G. J., ed.). Academic Press, San Diego, 1995, 273–349.
doi:10.1016/B978-012384430-9/50015-9

  2. Bronk, K. S., Michael, K. L., Pantano, P., and Walt, D. R. Combined imaging and chemical sensing using a single optical imaging fiber. Anal. Chem., 1995, 67, 2750–2757.
doi:10.1021/ac00113a005

  3. Healey, B. G. and Walt, D. R. Improved fiber-optic chemical sensor for penicillin. Anal. Chem., 1995, 67, 4471–4476.
doi:10.1021/ac00120a007

  4. Ferguson, J. A., Steemers, F. J., and Walt, D. R. High-density fiber-optic DNA random microsphere array. Anal. Chem., 2000, 72, 5618–5624.
doi:10.1021/ac0008284

  5. Pfeiffer, D., Ralis, E. V., Makower, A., and Scheller, F. W. Amperometric Bi-enzyme based biosensor for the detection of lactose – characterization and application. J. Chem. Technol. Biot., 1990, 49, 255–265.
doi:10.1002/jctb.280490307

  6. Ferreira, L. S., Trierweiler, J. O., De Souza, M. B., Jr., and Folly, R. O. M. A lactose FIA-biosensor system for monitoring and process control. Braz. J. Chem. Eng., 2004, 21, 307–315.
doi:10.1590/S0104-66322004000200021

  7. Adanyi, N., Szabo, E. E., and Varadi, M. Multi-enzyme biosensors with amperometric detection for determina­tion of lactose in milk and dairy products. Eur. Food Res. Technol., 1999, 209, 220–226.
doi:10.1007/s002170050484

  8. Eshkenazi, I., Maltz, E., Zion, B., and Rishpon, J. A three-cascaded-enzymes biosensor to determine lactose con­centration in raw milk. J. Dairy Sci., 2000, 83, 1939–1945.
doi:10.3168/jds.S0022-0302(00)75069-7

  9. Liu, H., Li, H., Ying, T., Sun, K., Qin, Y., and Qi, D. Ampero­metric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Anal. Chim. Acta, 1998, 358, 137–144.
doi:10.1016/S0003-2670(97)00576-X

10. Ferreira, L. S., Souza, J., Trierweiler, J. O., Hitzmann, B., and Folly, R. O. M. Analysis of experimental bio­sensor/FIA lactose measurements. Braz. J. Chem. Eng., 2003, 20, 7–13.
doi:10.1590/S0104-66322003000100003

11. Logoglu, E., Sungur, S., and Yildiz, Y. Development of lactose biosensor based on beta-galactosidase and glucose oxidase immobilized into gelatin. J. Macro­mol. Sci. Pure, 2006, 43, 525–533.
doi:10.1080/10601320600575256

12. Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N., and Kumar, A. Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene). Biosens. Bioelectron., 2004, 20, 651–657.
doi:10.1016/j.bios.2004.03.020

13. Amarita, F., Fernandez, C. R., and Alkorta, F. Hybrid biosensors to estimate lactose in milk. Anal. Chim. Acta, 1997, 349, 153–158.
doi:10.1016/S0003-2670(97)00245-6

14. Volesky, B. and Emond, C. Continuous-flow monitoring of lactose concentration. Biotechnol. Bioeng., 2004, 21, 1251–1276.
doi:10.1002/bit.260210713

15. Husain, Q. Galactosidases and their potential applications: a review. Crit. Rev. Biotechnol., 2010, 30, 41–62.
doi:10.3109/07388550903330497

16. Safina, G., Ludwig, R., and Gorton, L. A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes. Electrochim. Acta, 2010, 55, 7690–7695.
doi:10.1016/j.electacta.2009.10.052

17. Brain, J., Collier, W., and Hart, A. The occurrence and nature of electrochemical activity in milk from a herd of dairy cows. J. Dairy Res., 2006, 73, 115–120.
doi:10.1017/S0022029905001676

18. Stern, O. and Volmer, M. Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrift, 1919, 20, 183–188.

19. Rinken, T., Rinken, A., Tenno, T., and Järv, J. Calibration of glucose biosensors by using pre-steady state kinetic data. Biosens. Bioelectron., 1998, 13, 801–807.
doi:10.1016/S0956-5663(98)00045-1

20. Rinken, T. Determination of kinetic constants and enzyme activity from a biosensor transient signal. Anal. Lett., 2003, 36, 1535–1545.
doi:10.1081/AL-120021535

21. Rinken, T. and Tenno, T. Dynamic model of amperometric biosensors. Characterisation of glucose biosensor output. Biosens. Bioelectron., 2001, 16, 53–59.
doi:10.1016/S0956-5663(00)00133-0

22. Brenda. The Comprehensive Enzyme Information System. http://www.brenda-enzymes.info (Release 2011.1, January 2011).

23. Yang, S. T. and Tang, I. C. Lactose hydrolysis and oligo­saccharide formation catalyzed by β-galactosidase kinetics and mathematical modelling. Ann. NY Acad. Sci., 2006, 542, 417–422.
doi:10.1111/j.1749-6632.1988.tb25867.x
Back to Issue