ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On submersivity assumption for nonlinear control systems on homogeneous time scales; pp. 25–37
PDF | doi: 10.3176/proc.2011.1.03

Authors
Ülle Kotta ORCID Icon, Branislav Rehák, Małgorzata Wyrwas
Abstract
The paper derives a condition that allows construction of the σ-differential fields for nonlinear control systems, described by the set of input–output (i/o) higher-order delta-differential equations, defined on a homogeneous time scale. This condition is related to the submersivity assumption of the extended system, associated with i/o equations, but is formulated directly in terms of i/o equations.
References

  1. Grizzle, J. W. A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim., 1993, 31, 1026–1044.
doi:10.1137/0331046

  2. Kotta, Ü. and Nijmeijer, H. On dynamic input-output linearization of discrete-time nonlinear systems. Int. J. Control, 1994, 60, 1319–1337.
doi:10.1080/00207179408921524

  3. Halás, M., Kotta, Ü., Li, Z., Wang, H., and Yuan, C. Submersive rational difference systems and formal accessibility. In ISSAC 2009: Proceedings of the 34th International Symposium on Symbolic and Algebraic Computation, KIAS, Seoul, Korea (May, J. P., ed.). N.Y. ACM., New York, 2009, 175–182.

  4. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., and Wyrwas, M. Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. Control Lett., 2009, 58, 646–651.
doi:10.1016/j.sysconle.2009.04.006

  5. Bohner, M. and Peterson, A. Dynamic Equations on Time Scales. Birkhäuser, Boston, 2001.

  6. Aranda-Bricaire, E., Kotta, Ü., and Moog, C. H. Linearization of discrete-time systems. SIAM J. Control Optim., 1996, 34, 1999–2023.
doi:10.1137/S0363012994267315

  7. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., and Wyrwas, M. Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 264–282.

  8. Cohn, R. M. Difference Algebra. Wiley-Interscience, New York, 1965.
Back to Issue