1. Grizzle, J. W. A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim., 1993, 31, 1026–1044.
doi:10.1137/0331046
2. Kotta, Ü. and Nijmeijer, H. On dynamic input-output linearization of discrete-time nonlinear systems. Int. J. Control, 1994, 60, 1319–1337.
doi:10.1080/00207179408921524
3. Halás, M., Kotta, Ü., Li, Z., Wang, H., and Yuan, C. Submersive rational difference systems and formal accessibility. In ISSAC 2009: Proceedings of the 34th International Symposium on Symbolic and Algebraic Computation, KIAS, Seoul, Korea (May, J. P., ed.). N.Y. ACM., New York, 2009, 175–182.
4. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., and Wyrwas, M. Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. Control Lett., 2009, 58, 646–651.
doi:10.1016/j.sysconle.2009.04.006
5. Bohner, M. and Peterson, A. Dynamic Equations on Time Scales. Birkhäuser, Boston, 2001.
6. Aranda-Bricaire, E., Kotta, Ü., and Moog, C. H. Linearization of discrete-time systems. SIAM J. Control Optim., 1996, 34, 1999–2023.
doi:10.1137/S0363012994267315
7. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., and Wyrwas, M. Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 264–282.
8. Cohn, R. M. Difference Algebra. Wiley-Interscience, New York, 1965.