ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Robust state controller via reflection coefficient assignment; pp. 38–47
PDF | doi: 10.3176/proc.2011.1.04

Author
Ülo Nurges
Abstract
A solution to the robust pole assignment problem via reflection coefficients of polynomials is provided for discrete-time single-input single-output (SISO) and multi-input multi-output (MIMO) linear systems. For SISO systems a robust state controller and the polytopic uncertain plant which is stabilized by this controller have been found. For MIMO systems the problem is solved for an uncertain interval plant.
References

  1. Nurges, Ü. Robust pole assignment via reflection coefficients of polynomials. Automatica, 2006, 42, 1223–1230.
doi:10.1016/j.automatica.2006.03.007

  2. Nurges, Ü. New stability conditions via reflection coefficients of polynomials. IEEE Trans. Automatic Control, 2005, 50, 1354–1360.
doi:10.1109/TAC.2005.854614

  3. Batra, P. On necessary conditions for real robust Schur-stability. IEEE Trans. Automatic Control, 2003, 48, 259–261.
doi:10.1109/TAC.2002.808471

  4. Greiner, R. Necessary conditions for Schur-stability of interval polynomials. IEEE Trans. Automatic Control, 2004, 49, 740–744.
doi:10.1109/TAC.2004.825963

  5. Henrion, D., Peaucelle, D., Arzelier, D., and Šebek, M. Ellipsoidal approximation of the stability domain of a polynomial. IEEE Trans. Automatic Control, 2003, 48, 2255–2259.
doi:10.1109/TAC.2003.820161

  6. Calafiore, G. and El Ghaoui, L. Ellipsoidal bounds for uncertain linear equations and dynamical systems. Automatica, 2004, 40, 773–787.
doi:10.1016/j.automatica.2004.01.001

  7. Barmish, B. R. and Kang, H. I. A survey of extreme point results for robustness of control systems. Automatica, 1993, 29, 13–35.
doi:10.1016/0005-1098(93)90172-P

  8. Jetto, L. Strong stabilization over polytopes. IEEE Trans. Automatic Control, 1999, 44, 1211–1216.
doi:10.1109/9.769376

  9. Henrion, D., Sebek, M., and Kucera, V. Positive polynomials and robust stabilization with fixed-order controllers. IEEE Trans. Automatic Control, 2003, 48, 1178–1186.
doi:10.1109/TAC.2003.814103

10. Khatibi, H., Karimi, A., and Longchamp, R. Fixed-order controller design for polytopic systems using LMIs. IEEE Trans. Automatic Control, 2008, 53, 428–434.
doi:10.1109/TAC.2007.914301

11. Nurges, Ü. Reflection coefficients of polynomials and stable polytopes. IEEE Trans. Automatic Control, 2009, 54, 1314–1318.
doi:10.1109/TAC.2009.2015537

12. Keel, L. H. and Bhattacharyya, S. P. Robust stability and performance with fixed-order controllers. Automatica, 1999, 35, 1717–1724.
doi:10.1016/S0005-1098(99)00080-1

13. Diaz-Barrero, J. L. and Egozcue, J. J. Characterization of polynomials using reflection coefficients. Appl. Math. E-Notes, 2004, 4, 114–121.

14. Kay, S. M. Modern Spectral Estimation. Prentice Hall, New Jersey, 1988.

15. Oppenheim, A. M. and Schaffer, R. W. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, 1989.

16. Bingulac, S. and VanLandingham, H. E. Algorithms for Computer-aided Design of Multivariable Control Systems. Marcel Dekker, New York, 1993.

17. Ackermann, J. Robust Control. Systems with Uncertain Physical Parameters. Springer Verlag, London, 1993.

18. Büeler, B., Enge, A., and Fukuda, K. Exact volume computation for polytopes: a practical study. In Polytopes – Combinatorics and Computation (Kalai, G. and Ziegler, G., eds). Birkhäuser, Oberwolfach, 1997, 131–154.
Back to Issue