ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The comparison of the feeding of European perch Perca fluviatilis L. larvae in littoral and pelagic habitats of northern temperate lakes; pp. 336–349
PDF | https://doi.org/10.3176/proc.2022.4.04

Authors
Katrit Karus, Matiss Zagars, Helen Agasild, Tõnu Feldmann, Arvo Tuvikene, Linda Puncule, Priit Zingel
Abstract

We studied the feeding of European perch Perca fluviatilis L. larvae in littoral and pelagic habitats of four different lakes – one Latvian (Auciema) and three Estonian (Akste, Kaiavere, and Prossa). Altogether, 162 perch larvae (81 from both habitats) were collected to estimate the diet composition of gathered larval specimens in spring (2019) using gut content analysis via epifluorescence microscopy. Attention was paid particularly to the question how does the larval perch food composition differ in pelagic and littoral habitats. We hypothesized that the consumption of zooplankton is higher and the larval condition is better in littoral habitats. We assessed the feeding on both protozoo- (ciliates) and metazooplankton and applied multiple indices (Hurlbert’s standardized niche breadth, Ivlev’s selectivity and relative importance index) to evaluate, respectively, the larval fish prey importance, feeding homogeneity and strategies. The results showed that larval length and weight were slightly higher and body condition was slightly better in the lakes’ littoral habitats. The feeding niche of perch larvae was narrower in the littoral, which can indicate more favourable feeding conditions in littoral than lake pelagic habitats. While the small cladocerans (Bosmina longirostrisMüller) were generally the preferred and important food objects, ciliates were avoided and consumed only when their share in the total zooplankton biomass was >40%. However, in shortage of cladocerans, ciliates could be vitally important food objects for perch larvae.

References

1. Arts, M. T., Ackman, R. G. and Holub, B. J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution.Can. J. Fish. Aquat. Sci.58(1), 122–137. 
https://doi.org/10.1139/f00-224

2. AVMA. Guidelines for the Euthanasia of Animals: 2020
https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf (accessed 2021-09-16)

3. Balushkina, E. V. and Winberg, G. G. 1979. Relation between body mass and length in planktonic animals. In General Bases of Research into Water Ecosystems (Winberg, G. G., ed.). Nauka, Leningrad, 169–172(in Russian).

4. Bray, J. R. and Curtis, J. T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr.27(4), 325–349. 
https://doi.org/10.2307/1942268

5. Bremigan, M. T. and Stein, R. A. 1994. Gape-dependent larval foraging and zooplankton size: implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci.51, 913–922. 
https://doi.org/10.1139/f94-090

6. Bremigan, M. T., Dettmers, J. M. and Mahan, A. L. 2003. Zooplankton selectivity by larval yellow perch in Green Bay, Lake Michigan. J. Great Lakes Res.29(3), 501–510. 
https://doi.org/10.1016/S0380-1330(03)70454-7

7. Byström, P. and García-Berthou, E. 1999. Density dependent growth and size specific competitive interactions in young fish. Oikos 86(2), 217–232. 
https://doi.org/10.2307/3546440

8. Byström, P., Persson, L., Wahlström, E. and Westman, E. 2003. Size- and density-dependent habitat use in predators: consequences for habitat shifts in young fish. J. Anim. Ecol.72, 156–168. 
https://www.jstor.org/stable/3505552
https://doi.org/10.1046/j.1365-2656.2003.00681.x

9. Clarke, K. R. and Gorley, R. N. 2006. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth.

10. Coles, T. F. 1981. The distribution of perch, Perca fluviatilis L. throughout their first year of life in Llyn Tegid, North Wales. J. Fish Biol.18, 15–30. 
https://doi.org/10.1111/j.1095-8649.1981.tb03755.x

11. Council Regulation. 2009. (EC) No 1099/2009, on the protection of animals at the time of killing
https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:303:0001:0030:ET:PDF (accessed 2021-08-01).

12. Diehl, S. 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos53, 207–214. 
https://doi.org/10.2307/3566064

13. Diehl, S. 1993. Effects of habitat structure on resource availability, diet and growth of benthivorous perch, Perca fluviatilisOikos67, 403–414. 
https://doi.org/10.2307/3545353

14. Diehl, S. and Eklöv, P. 1995. Effects of piscivore-mediated habiat use on resources, diet, and growth of perch. Ecology76(6), 1712–1726. 
https://doi.org/10.2307/1940705

15. Dionne, M. and Folt, C. L. 1991. An experimental analysis of macrophyte growth forms as fish foraging habitat. Can. J. Fish. Aquat. Sci.48(1), 123–131. 
https://doi.org/10.1139/f91-017

16. Finlay, B. J. 1982. Procedures for the isolation, cultivation and identification of protozoa. In Experimental Microbial Ecology (Burns, R. G., Slater, J. H., eds). Blackwell Scientific Publications, Oxford, 44–65.

17. Fukami, K., Watanabe, A., Fujita, S., Yamaoka, K. and Nishijima, T. 1999. Predation on naked protozoan microzooplankton by fish larvae. Mar. Ecol. Prog. Ser.185, 285–291. 
https://doi.org/10.3354/meps185285

18. Guma’a, S. A. 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwater Biol.8(2), 177–187. 
https://doi.org/10.1111/j.1365-2427.1978.tb01439.x

19. Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rep. minutes ICES20.

20. Houde, E. D. 1969a. Sustained swimming ability of larvae of walleye and yellow perch. J. Fish. Res. Board Can.26, 1647–1659.
https://doi.org/10.1139/f69-148

21. Houde, E. D. 1969b. Distribution of larval walleyes and yellow perch in a bay of Oneida lake and its relation to water currents and Zooplankton. NY. Fish Game J.16, 184–205.

22. Hurlbert, S. H. 1978. The measurement of niche overlap and some relatives. Ecology59(1), 67–77. 
https://doi.org/10.2307/1936632

23. Hyslop, E. J. 1980. Stomach contents analysis – a review of methods and their application. J. Fish Biol.17(4), 411–429. 
https://doi.org/10.1111/j.1095-8649.1980.tb02775.x

24. Ilina, L. K. 1973. Behavior of different ecological groups of 0-group perch Perca fluviatilis L. Voprosy ihtiologii2(79), 350–361 (in Russian).

25. Ivlev, V. S. 1961. Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven.

26. Jeppesen, E., Lauridsen, T. L., Kairesalo, T. and Perrow, M. R. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K., eds). Ecological Studies Series, 131. Springer, New York, 91–114. 
https://doi.org/10.1007/978-1-4612-0695-8_5

27. Kazanova, I. I. 1953. Key to eggs and larvae of fishes of the Baltic Sea and its gulfs. Trudy VNIROXXVI, 221–265 (in Russian).

28. Keast, A. 1977. Diet overlaps and feeding relationships between the year classes in the yellow perch (Perca flavescens). Environ. Biol. Fish.2, 53–70. 
https://doi.org/10.1007/BF00001416

29. Koblitskaya, A. F. 1981. Opredelitel’ Molodi Presnovodnykh Ryb (Identification key for young stages of freshwater fish). 2nd ed. Leg. i pishevaja promishlennost (in Russian).

30. Krebs, C. J. 1989. Niche overlaps and diet analysis. In Ecological Methodology (Krebs, C., ed.). Harper & Row, New York.

31. Kurmayer, R. and Wanzenbock, J. 1996. Top-down effects of underyearling fish on a phytoplankton community. Freshwat. Biol.36, 599–609.
https://doi.org/10.1046/j.1365-2427.1996.00127.x

32. Lankov, A., Järv, L., Raid, T., Simm, M., Arula, T. and Põlme, S. 2006. Perch and herring – different feeding strategies in early life history? ICES CM2006(F2).

33. Lauridsen, T. L. and Lodge, D. M. 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr.41, 794–798. 
https://doi.org/10.4319/lo.1996.41.4.0794

34. Lazzaro, X. 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia146, 97–167. 
https://doi.org/10.1007/BF00008764

35. Lehtiniemi, M. 2005. Swim or hide: predator cues cause species specific reactions in young fish larvae. J. Fish Biol.66, 1285–1299. 
https://doi.org/10.1111/j.0022-1112.2005.00681.x

36. Masclaux, H., Bourdier, G., Riera, P., Kainz, M. J., Jouve, L., Duffaud, E. and Bec, A. 2014. Resource partitioning among cladocerans in a littoral macrophyte zone: implications for the transfer of essential compounds. Aquat. Sci.76, 73–81. 
https://doi.org/10.1007/s00027-013-0314-7

37. Mayer, C. M. and Wahl, D. H. 1997. The relationship between prey selectivity and growth and survival in a larval fish. Can. J. Fish. Aquat. Sci.54, 1504–1512. 
https://doi.org/10.1139/f97-056

38. Müller‐Navarra, D., Güss, S. and von Storch, H. 1997. Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Glob. Chang. Biol.3(5), 429–438. 
https://doi.org/10.1046/j.1365-2486.1997.00080.x

39. Nicolle, A., Hansson, L. A. and Brönmark, C. 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia652(1), 119–125.
https://doi.org/10.1007/s10750-010-0323-7

40. Nunn A. D., Tewson L. H., Cowx, I. G. 2012. The foraging ecology of larval and juvenile fishes. Rev. Fish Biol. Fisher.22, 377–408. 
https://doi.org/10.1007/s11160-011-9240-8

41. Nürnberg, G. 2001. Eutrophication and Trophic State. Lakeline21(1), 29–33.

42. OECD. 1982. Eutrophication of waters. Monitoring, assessment and control.

43. Okun, N. and Mehner, T. 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol. Freshw. Fish14(2), 139–149. 
https://doi.org/10.1111/j.1600-0633.2005.00087.x

44. Overton, J. L. and Paulsen, H. 2005. First feeding of perch (Perca fluviatilis) larvae. DFU-rapport No. 150-05. Danmarks Fiskeriundersøgelser, Lyngby. 

45. Peňáz, M. 2001. A general framework of fish ontogeny: a review of the ongoing debatte. Folia Zool. Brno50, 241–256.

46. Persson, L. 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos68(1), 12–22. 
https://doi.org/10.2307/3545304

47. Persson, L. and Crowder, L. B. 1997. Fish-habitat interactions mediated via ontogenetic niche shifts. In The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K., eds). Ecological Studies Series, 131. Springer, New York, 3–23. 
https://doi.org/10.1007/978-1-4612-0695-8_1

48. Persson, L. and Greenberg, L. A. 1990. Juvenile competitive bottlenecks: the perch (Perca fluviatilis)‐roach (Rutilus rutilus) interaction. Ecology71(1), 44–56. 
https://doi.org/10.2307/1940246

49. Persson, L., Byström, P., Wahlström, E., Nijlunsing, A. and Rosema, S. 2000. Resource limitation during early ontogency: constraints induced by growth capacity in larval and juvenile fish. Oecologia122(4), 459–469. 
http://www.jstor.org/stable/4222567
https://doi.org/10.1007/s004420050967

50. R Core Team 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
https://www.R-project.org/ (accessed 2021-08-01).

51. Ruttner-Kolisko, A. 1977. Suggestions for biomass calculations of planktonic rotifers. Arch. Hydrobiol.8, 71–76.

52. Sargent, J., Bell, G., McEvoy, L., Tocher, D. and Estevez, A. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture177, 191–199. 
https://doi.org/10.1016/S0044-8486(99)00083-6

53. Schriver, P., Bøgestrand, J., Jeppesen, E. and Søndergaard, M. 1995. Impact of submerged macrophytes on fish-zooplanl phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshw. Biol.33(2), 255–270. 
https://doi.org/10.1111/j.1365-2427.1995.tb01166.x

54. Sherr, E. B. and Sherr, B. F. 1983. Double-staining epifluorescence technique to assess frequency of dividing cells and bacteriovory in natural populations of heterotrophic microprotozoa. Appl. Environ. Microbiol.46(6), 1388–1393. 
https://doi.org/10.1128/aem.46.6.1388-1393.1983

55. Skrzypczak, A., Mamcarz, A., Kujawa, R., Kucharczyk, D. and Furgala‐Selezniow, G. 1998. Feeding habits of larval Eurasian perch, Perca fluviatilis(Percidae). Ital. J. Zool.65, 243–245. 
https://doi.org/10.1080/11250009809386825

56. Stahr, K. J. and Shoup, D. E. 2015. American water willow mediates survival and antipredator behavior of juvenile Largemouth Bass. Trans. Am. Fish. Soc.144(5), 903–910. 
https://doi.org/10.1080/00028487.2015.1052559

57. StatSoft, Inc. 2007. STATISTICA, version 8.0. 
http://www.statsoft.com (accessed 2021-08-01)

58. Studenikina, E. I. and Cherepakhina, M. M. 1969. Srednii ves osnovykh form zooplanktona Azavskogo morya (Mean weight of basic zooplankton forms of the Azov Sea). Gidrobiol. Zh.5, 89–91 (in Russian).

59. Sutela, T. and Huusko, A. 2000. Varying resistance of zooplankton prey to digestion: implications for quantifying larval fish diets. Trans. Am. Fish. Soc.,129(2), 545–551. 
https://doi.org/10.1577/1548-8659(2000)129<0545:VROZPT>2.0.CO;2

60. Špoljar, M., Dražina, T., Lajtner, J., Sertić, M. D., Radanović, I., Wallace, R. L. et al. 2018. Zooplankton assemblage in four temperate shallow waterbodies in association with habitat heterogeneity and alternative states. Limnologica71, 51–61. 
https://doi.org/10.1016/j.limno.2018.05.004

61. Treasurer, J. W. 1990. The food and daily food consumption of lacustrine 0+ perch, Perca fluviatilis L. Freshw. Biol.24(2), 361–374. 
https://doi.org/10.1111/j.1365-2427.1990.tb00716.x

62. Urho, L. 1996. Habitat shifts of perch larvae as survival strategy. Ann. Zool. Fenn.33, 329–340.

63. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Schweizerbart, Stuttgart (in German).

64. Wang, N. and Eckmann, R. 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia277, 135–143. 
https://doi.org/10.1007/BF00007295

65. Wetzel, R. G. 1983. Limnology. Fort Worth, Philadelphia.

66. Whiteside, M. C., Doolittle, W. L. and Swindoll, C. M. 1985. Zooplankton as food resources for larval fish. Int. Ver. The., 22, 2523–2526. 
https://doi.org/10.1080/03680770.1983.11897716

67. Winfield, I. J. 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophtalmus, and perch, Perca fluviatilisJ. Fish Biol.29, 37–48. 
https://doi.org/10.1111/j.1095-8649.1986.tb04997.x

68. Yufera, M. and Darias, M. J. 2007. The onset of exogenous feeding in marine fish larvae. Aquaculture268, 53–63. 
https://doi.org/10.1016/j.aquaculture.2007.04.050

69. Zingel, P., Karus, K., Agasild, H. and Nõges, T. 2019a. The influence of macrophytes on the feeding of fish larvae in a shallow brackish sea. J. Mar. Syst.189, 127−136. 
https://doi.org/10.1016/j.jmarsys.2018.11.001

70. Zingel, P., Agasild, H., Karus, K., Buholce, L. and Nõges T 2019b. Importance of ciliates as food for fish larvae in a shallow sea bay and a large shallow lake. Eur. J. Protistol.67, 59–70. 
https://doi.org/10.1016/j.ejop.2018.10.004

71. Zingel, P., Paaver, T., Karus, K., Agasild, H. and Nõges, T. 2012. Ciliates as the crucial food source of larval fish in a shallow eutrophic lake. Limnol. Oceanogr.57, 1049–1056. 
https://doi.org/10.4319/lo.2012.57.4.1049

Back to Issue