Signals in nerves include electrical, mechanical and thermal components and are characterised by the complexity of processes. The modelling of these signals is analysed from the viewpoint of DeLanda, who has demonstrated the possibility of revealing Deleuze’s philosophical theories by using the notions from nonlinear dynamics. It is shown that the mathematical modelling of processes in nerves by the authors of this paper follows the general ideas of multiplicity and causal interactions described by DeLanda.
1. Bogen, J. The Hodgkin–Huxley equations and the concrete model: comments on Craver, Schaffner, and Weber. Philos. Sci., 2008, 75(5), 1034–1046.
https://doi.org/10.1086/594544
2. Brigandt, I., Green, S. and O’Malley, M. A. Systems biology and mechanistic explanation. In The Routledge Handbook of Mechanisms and Mechanical Philosophy (Glennan, S. and Illari, P., eds). Routledge, London, 2017, 362–374.
https://doi.org/10.4324/9781315731544-27
3. Carrillo, N. and Knuuttila, T. An artifactual perspective on idealization: constant capacitance and the Hodgkin and Huxley model. In Models and Idealizations in Science. Logic, Epistemology, and the Unity of Science (Cassini, A. and Redmond, J., eds), Vol. 50. Springer, Cham, 2021, 51–70.
https://doi.org/10.1007/978-3-030-65802-1_2
4. Carrillo, N. and Martínez, S. Scientific inquiry: from metaphors to abstraction. Forthcoming in Perspect. Sci., 2022.
https://doi.org/10.1162/posc_a_00571
5. Castellani, B. and Gerrits, L. Map of the complexity sciences. 2021.
https://www.art-sciencefactory.com/complexity-map_feb09.html (accessed 2022-10-05).
6. Craver, C. F. Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philos. Sci., 2008, 75(5), 1022–1033.
https://doi.org/10.1086/594543
7. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555–602.
https://doi.org/10.1152/physrev.00048.2009
8. DeLanda, M. Intensive Science and Virtual Philosophy. Continuum, London, 2002.
9. DeLanda, M. Space: extensive and intensive, actual and virtual. In Deleuze and Space (Buchanan, I. and Lambert, G., eds). Edinburgh University Press, Edinburgh, 2005, 80–87.
https://doi.org/10.3366/edinburgh/9780748618743.003.0005
10. DeLanda, M. Assemblage Theory. Edinburgh University Press, Edinburgh, 2016.
https://doi.org/10.1515/9781474413640
11. Deleuze, G. and Guattari, F. A Thousand Plateaus: Capitalism and Schizophrenia. University of Minnesota Press, Minneapolis, MN, 1987.
12. Deleuze, G. and Guattari, F. What is Philosophy? Columbia University Press, New York, NY, 1994.
13. Driessen, A. The role of philosophy as a guide in complex scientific and technological processes. 2016.
http://philsci-archive.pitt.edu/12446 (accessed 2022-10-05).
14. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J. G., Voorn, P., Glas, G. and de Regt, H. W. Thinking about the nerve impulse: a critical analysis of the electricity-centered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172–185.
https://doi.org/10.1016/j.pneurobio.2018.06.009
15. Einstein, A. On the method of theoretical physics. Philos. Sci., 1(2), 1934, 163–169.
https://doi.org/10.1086/286316
16. Engelbrecht, J., Peets, T. and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771–1783.
https://doi.org/10.1007/s10237-018-1055-2
17. Engelbrecht, J., Peets, T. and Tamm, K. Continuum mechanics and signals in nerves. Proc. Estonian Acad. Sci., 2021, 70(1), 3–18.
https://doi.org/10.3176/proc.2021.1.02
18. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M. and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.
https://doi.org/10.3176/proc.2017.4.28
19. Engelbrecht, J., Tamm, K. and Peets, T. Modeling of complex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90–95.
https://doi.org/10.1016/j.mehy.2018.08.021
20. Engelbrecht, J., Tamm, K. and Peets, T. Criteria for modelling wave phenomena in complex systems: the case of signals in nerves. Proc. Estonian Acad. Sci., 2019, 68(3), 276–283.
https://doi.org/10.3176/proc.2019.3.05
21. Engelbrecht, J., Tamm, K. and Peets, T. Internal variables used for describing the signal propagation in axons. Contin. Mech. Thermodyn., 2020, 32(6), 1619–1627.
https://doi.org/10.1007/s00161-020-00868-2
22. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of processes in nerve fibres at the interface of physiology and mathematics. Biomech. Model. Mechanobiol., 2020, 19(6), 2491–2498.
https://doi.org/10.1007/s10237-020-01350-3
23. Engelbrecht, J., Tamm, K. and Peets, T. On mechanisms of electromechanophysiological interactions between the components of nerve signals in axons. Proc. Estonian Acad. Sci., 2020, 69(2), 81–96.
https://doi.org/10.3176/proc.2020.2.03
24. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of Complex Signals in Nerves. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-75039-8
25. Érdi, P. Complexity Explained. Springer, Berlin, 2007.
https://doi.org/10.1007/978-3-540-35778-0
26. Goriely, A., Geers, M. G., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S. et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol., 2015, 14(5), 931–965.
https://doi.org/10.1007/s10237-015-0662-4
27. Haken, H. Synergetics: An Introduction : Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, Berlin, 1978.
https://doi.org/10.1007/978-3-642-96469-5
28. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790–9795.
https://doi.org/10.1073/pnas.0503823102
29. Hodgkin, A. L. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool, 1964.
30. Holdsworth, D. Becoming interdisciplinary: making sense of Delanda’s reading of Deleuze. Paragraph, 2006, 29(2), 139–156.
https://doi.org/10.3366/prg.2006.0013
31. Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H. and Bruzzone, R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta – Biomembr., 2004, 1662 (1–2), 113–137.
https://doi.org/10.1016/j.bbamem.2003.10.023
32. Kaplan, D. M. and Craver, C. F. The explanatory force of dynamical and mathematical models in neuroscience: a mechanistic perspective. Philos. Sci., 2011, 78(4), 601–627.
https://doi.org/10.1086/661755
33. Kitano, H. Systems biology: a brief overview. Science, 2002, 295(5560), 1662–1664.
https://doi.org/10.1126/science.1069492
34. Knyazeva, H. The complex nonlinear thinking: Edgar Morin’s demand of a reform of thinking and the contribution of synergetics. World Futures, 2004, 60(5–6), 389–405.
https://doi.org/10.1080/02604020490471867
35. Koch, C. and Laurent, G. Complexity and the nervous system. Science, 1999, 284(5411), 96–98.
https://doi.org/10.1126/science.284.5411.96
36. Levy, A. What was Hodgkin and Huxley’s achievement? Br. J. Philos. Sci., 2014, 65(3), 469–492.
https://doi.org/10.1093/bjps/axs043
37. Mainzer, K. Thinking in Complexity. The Complex Dynamics of Matter, Mind, and Mankind. Springer, Berlin, 1997.
38. McCulloch, A. D. and Huber, G. Integrative biological modelling in silico. In ‘In Silico’ Simulation of Biological Processes (Bock, G. and Goode, J. A., eds). John Wiley & Sons, Chichester, 2002, 4–25.
https://doi.org/10.1002/0470857897.ch2
39. Morin, E. Restricted complexity, general complexity. In Worldviews, Science and Us. World Scientific, 2007, 5–29.
https://doi.org/10.1142/9789812707420_0002
40. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001.
https://doi.org/10.1088/1478-3975/11/5/051001
41. Nail, T. What is an assemblage? Substance, 2017, 46(142), 21–37.
https://doi.org/10.1353/sub.2017.0001
42. Nicolis, G. and Nicolis, C. Foundations of Complex Systems: Emergence, Information and Predicition. World Scientific, Singapore, 2012.
https://doi.org/10.1142/8260
43. Noble, D. 2002. Chair’s introduction. In ‘In Silico’ Simulation Biological Processes. Novartis Foundation Symposium (Bock, G. and Goode, J. A., eds), Vol. 247. Novartis Foundation, London, 1–3.
https://doi.org/10.1002/0470857897.ch1
44. Peets, T. and Tamm, K. Mathematics of nerve signals. In Applied Wave Mathematics II (Berezovski, A. and Soomere, T., eds), Vol. 6. Springer, Cham, 2019, 207–238.
https://doi.org/10.1007/978-3-030-29951-4_10
45. Peyrard, M. How is information transmitted in a nerve? J. Biol. Phys., 2020, 46(4), 327–341.
https://doi.org/10.1007/s10867-020-09557-2
46. Protevi, J. Deleuze, Guattari and emergence. Paragraph, 2006, 29(2), 19–39.
https://doi.org/10.3366/prg.2006.0018
47. Scott, A. Neuroscience: A Mathematical Primer. Springer, New York, NY, 2002.
48. Singh, P., Sahoo, P., Ghosh, S., Saxena, K., Manna, J. S., Ray, K. et al. Filaments and four ordered structures inside a neuron fire a thousand times faster than the membrane: theory and experiment. J. Integr. Neurosci., 2021, 20(4), 777–790.
https://doi.org/10.31083/j.jin2004082
49. Tamm, K., Peets, T. and Engelbrecht, J. Mechanical waves in myelinated axons. Biomech. Model. Mechanobiol., 2022, 21(4), 1285–1297.
https://doi.org/10.1007/s10237-022-01591-4
50. Weber, M. Philosophy of Experimental Biology. Cambridge University Press, Cambridge, 2004.