ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Signals in nerves from the philosophical viewpoint; pp. 369–375
PDF | https://doi.org/10.3176/proc.2022.4.07

Authors
Jüri Engelbrecht, Kert Tamm, Tanel Peets
Abstract

Signals in nerves include electrical, mechanical and thermal components and are characterised by the complexity of processes. The modelling of these signals is analysed from the viewpoint of DeLanda, who has demonstrated the possibility of revealing Deleuze’s philosophical theories by using the notions from nonlinear dynamics. It is shown that the mathematical modelling of processes in nerves by the authors of this paper follows the general ideas of multiplicity and causal interactions described by DeLanda.

References

1. Bogen, J. The Hodgkin–Huxley equations and the concrete model: comments on Craver, Schaffner, and Weber. Philos. Sci., 2008, 75(5), 1034–1046.
https://doi.org/10.1086/594544

2. Brigandt, I., Green, S. and O’Malley, M. A. Systems biology and mechanistic explanation. In The Routledge Handbook of Mechanisms and Mechanical Philosophy (Glennan, S. and Illari, P., eds). Routledge, London, 2017, 362–374.
https://doi.org/10.4324/9781315731544-27

3. Carrillo, N. and Knuuttila, T. An artifactual perspective on idealization: constant capacitance and the Hodgkin and Huxley model. In Models and Idealizations in Science. Logic, Epistemology, and the Unity of Science (Cassini, A. and Redmond, J., eds), Vol. 50. Springer, Cham, 2021, 51–70.
https://doi.org/10.1007/978-3-030-65802-1_2

4. Carrillo, N. and Martínez, S. Scientific inquiry: from meta­p­hors to abstraction. Forthcoming in Perspect. Sci., 2022.  
https://doi.org/10.1162/posc_a_00571

5. Castellani, B. and Gerrits, L. Map of the complexity sciences. 2021. 
https://www.art-sciencefactory.com/complexity-map_feb09.html (accessed 2022-10-05).

6. Craver, C. F. Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philos. Sci., 2008, 75(5), 1022–1033.
https://doi.org/10.1086/594543

7. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555–602.
https://doi.org/10.1152/physrev.00048.2009

8. DeLanda, M. Intensive Science and Virtual Philosophy. Continuum, London, 2002.

9. DeLanda, M. Space: extensive and intensive, actual and virtual. In Deleuze and Space (Buchanan, I. and Lambert, G., eds). Edinburgh University Press, Edinburgh, 2005, 80–87.
https://doi.org/10.3366/edinburgh/9780748618743.003.0005

10. DeLanda, M. Assemblage Theory. Edinburgh University Press, Edinburgh, 2016.
https://doi.org/10.1515/9781474413640

11. Deleuze, G. and Guattari, F. A Thousand Plateaus: Capitalism and Schizophrenia. University of Minnesota Press, Minneapolis, MN, 1987.

12. Deleuze, G. and Guattari, F. What is Philosophy? Columbia University Press, New York, NY, 1994.

13. Driessen, A. The role of philosophy as a guide in complex scientific and technological processes. 2016. 
http://philsci-archive.pitt.edu/12446 (accessed 2022-10-05). 

14. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J. G., Voorn, P., Glas, G. and de Regt, H. W. Thinking about the nerve impulse: a critical analysis of the electricity-centered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172–185.
https://doi.org/10.1016/j.pneurobio.2018.06.009

15. Einstein, A. On the method of theoretical physics. Philos. Sci.1(2), 1934, 163–169.
https://doi.org/10.1086/286316

16. Engelbrecht, J., Peets, T. and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771–1783.
https://doi.org/10.1007/s10237-018-1055-2

17. Engelbrecht, J., Peets, T. and Tamm, K. Continuum me­chanics and signals in nerves. Proc. Estonian Acad. Sci., 2021, 70(1), 3–18.
https://doi.org/10.3176/proc.2021.1.02

18. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M. and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.
https://doi.org/10.3176/proc.2017.4.28

19. Engelbrecht, J., Tamm, K. and Peets, T. Modeling of comp­lex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90–95.
https://doi.org/10.1016/j.mehy.2018.08.021

20. Engelbrecht, J., Tamm, K. and Peets, T. Criteria for model­l­ing wave phenomena in complex systems: the case of signals in nerves. Proc. Estonian Acad. Sci., 2019, 68(3), 276–283.
https://doi.org/10.3176/proc.2019.3.05

21. Engelbrecht, J., Tamm, K. and Peets, T. Internal variables used for describing the signal propagation in axons. Contin. Mech. Thermodyn., 2020, 32(6), 1619–1627.
https://doi.org/10.1007/s00161-020-00868-2

22. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of processes in nerve fibres at the interface of physiology and mathematics. Biomech. Model. Mechanobiol., 2020, 19(6), 2491–2498.
https://doi.org/10.1007/s10237-020-01350-3

23. Engelbrecht, J., Tamm, K. and Peets, T. On mechanisms of electromechanophysiological interactions between the com­ponents of nerve signals in axons. Proc. Estonian Acad. Sci., 2020, 69(2), 81–96.
https://doi.org/10.3176/proc.2020.2.03

24. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of Complex Signals in Nerves. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-75039-8

25. Érdi, P. Complexity Explained. Springer, Berlin, 2007.
https://doi.org/10.1007/978-3-540-35778-0

26. Goriely, A., Geers, M. G., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S. et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol., 2015, 14(5), 931–965.
https://doi.org/10.1007/s10237-015-0662-4

27. Haken, H. Synergetics: An Introduction : Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, Berlin, 1978.
https://doi.org/10.1007/978-3-642-96469-5

28. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790–9795.
https://doi.org/10.1073/pnas.0503823102

29. Hodgkin, A. L. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool, 1964.

30. Holdsworth, D. Becoming interdisciplinary: making sense of Delanda’s reading of Deleuze. Paragraph, 2006, 29(2), 139–156.
https://doi.org/10.3366/prg.2006.0013

31. Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H. and Bruzzone, R. Electrical synapses: a dy­namic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta – Biomembr., 2004, 1662 (1–2), 113–137.
https://doi.org/10.1016/j.bbamem.2003.10.023

32. Kaplan, D. M. and Craver, C. F. The explanatory force of dynamical and mathematical models in neuroscience: a mechanistic perspective. Philos. Sci., 2011, 78(4), 601–627.
https://doi.org/10.1086/661755

33. Kitano, H. Systems biology: a brief overview. Science, 2002, 295(5560), 1662–1664.
https://doi.org/10.1126/science.1069492

34. Knyazeva, H. The complex nonlinear thinking: Edgar Morin’s demand of a reform of thinking and the contribution of synergetics. World Futures, 2004, 60(5–6), 389–405.
https://doi.org/10.1080/02604020490471867

35. Koch, C. and Laurent, G. Complexity and the nervous system. Science, 1999, 284(5411), 96–98.
https://doi.org/10.1126/science.284.5411.96

36. Levy, A. What was Hodgkin and Huxley’s achievement? Br. J. Philos. Sci., 2014, 65(3), 469–492.
https://doi.org/10.1093/bjps/axs043

37. Mainzer, K. Thinking in Complexity. The Complex Dynamics of Matter, Mind, and Mankind. Springer, Berlin, 1997.

38. McCulloch, A. D. and Huber, G. Integrative biological modelling in silico. In ‘In Silico’ Simulation of Biological Processes (Bock, G. and Goode, J. A., eds). John Wiley & Sons, Chichester, 2002, 4–25.
https://doi.org/10.1002/0470857897.ch2

39. Morin, E. Restricted complexity, general complexity. In Worldviews, Science and  Us. World Scientific, 2007, 5–29. 
https://doi.org/10.1142/9789812707420_0002

40. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001.
https://doi.org/10.1088/1478-3975/11/5/051001

41. Nail, T. What is an assemblage? Substance, 2017, 46(142), 21–37.
https://doi.org/10.1353/sub.2017.0001

42. Nicolis, G. and Nicolis, C. Foundations of Complex Systems: Emergence, Information and Predicition. World Scientific, Singapore, 2012.
https://doi.org/10.1142/8260

43. Noble, D. 2002. Chair’s introduction. In ‘In Silico’ Simula­tion Biological Processes. Novartis Foundation Symposium  (Bock, G. and Goode, J. A., eds), Vol. 247. Novartis Foundation, London, 1–3.
https://doi.org/10.1002/0470857897.ch1

44. Peets, T. and Tamm, K. Mathematics of nerve signals. In Applied Wave Mathematics II (Berezovski, A. and Soomere, T., eds), Vol. 6. Springer, Cham, 2019, 207–238.
https://doi.org/10.1007/978-3-030-29951-4_10

45. Peyrard, M. How is information transmitted in a nerve? J. Biol. Phys., 2020, 46(4), 327–341.
https://doi.org/10.1007/s10867-020-09557-2

46. Protevi, J. Deleuze, Guattari and emergence. Paragraph, 2006, 29(2), 19–39.
https://doi.org/10.3366/prg.2006.0018

47. Scott, A. Neuroscience: A Mathematical Primer. Springer, New York, NY, 2002.

48. Singh, P., Sahoo, P., Ghosh, S., Saxena, K., Manna, J. S., Ray, K. et al. Filaments and four ordered structures inside a neuron fire a thousand times faster than the membrane: theory and experiment. J. Integr. Neurosci., 2021, 20(4), 777–790.
https://doi.org/10.31083/j.jin2004082

49. Tamm, K., Peets, T. and Engelbrecht, J. Mechanical waves in myelinated axons.  Biomech. Model. Mechanobiol., 2022, 21(4), 1285–1297.
https://doi.org/10.1007/s10237-022-01591-4

50. Weber, M. Philosophy of Experimental Biology. Cambridge University Press, Cambridge, 2004.

Back to Issue