1. Abramov, V. On a graded q-differential algebra. J. Nonlinear Math. Phys., 2006, 13 Supplement, 1–8.
doi:10.2991/jnmp.2006.13.s.1
2. Abramov, V. Generalization of superconnection in noncommutative geometry. Proc. Estonian Acad. Sci. Phys. Math., 2006, 55, 3–15.
3. Abramov, V. Graded q-differential algebra approach to q-connection. In Generalized Lie Theory in Mathematics, Physics and Beyond (Silvestrov, S. and Paal, E., eds). Springer, 2009, 71–79.
doi:10.1007/978-3-540-85332-9_6
4. Abramov, V. and Liivapuu, O. Geometric approach to BRST-symmetry and ZN-generalization of superconnection. J. Nonlinear Math. Phys., 2006, 13 Supplement, 9–20.
doi:10.2991/jnmp.2006.13.s.2
5. Connes, A. C* algèbres et géométrie différentielle. C. R. Acad. Sci. Paris, 1980, 290, Série A, 599–604.
6. Cuntz, J. and Quillen, D. Algebra extensions and nonsingularity. J. Amer. Math. Soc., 1995, 8, 251–289.
doi:10.2307/2152819
7. Dubois-Violette, M. dN = 0: generalized homology. K-Theory, 1998, 14, 371–404.
doi:10.1023/A:1007786403736
8. Dubois-Violette, M. Lectures on differentials, generalized differentials and on some examples related to theoretical physics. arXiv: math.QA/0005256, 2000.
9. Dubois-Violette, M. Lectures on graded differential algebras and noncommutative geometry. In Noncommutative Differential Geometry and Its Applications to Physics: Proceedings of the Workshop (Maeda, Y., Moriyoshi, H., Omori, H., Sternheimer, D., Tate, T., and Watamura, S., eds). Math. Phys. Stud., 2001, 23, 245–306.
10. Dubois-Violette, M. and Kerner, R. Universal q-differential calculus and q-analog of homological algebra. Acta Math. Univ. Comenian, 1996, 65, 175–188.
11. Dubois-Violette, M. and Masson, T. On the first order operators in bimodules. Lett. Math. Phys., 1996, 37, 467–474.
doi:10.1007/BF00312677
12. Mathai, V. and Quillen, D. Superconnections, Thom classes and equivariant differential forms. Topology, 1986, 25, 85–110.
doi:10.1016/0040-9383(86)90007-8