1. Gerstenhaber, M. On the deformation of rings and algebras. Ann. Math., 1964, 79, 59–103.
doi:10.2307/1970484
2. Ginzburg, V. and Kapranov, M. Koszul duality for operads. Duke Math. J., 1994, 76, 203–272.
doi:10.1215/S0012-7094-94-07608-4
3. Gnedbaye, A. V. Opérades des algèbres k + 1-aires. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995)}, 83–113, Contemp. Math., 202. Amer. Math. Soc., Providence, RI, 1997.
4. Gnedbaye, A. V. and Wambst, M. Jordan triples and operads. J. Algebra, 2000, 231, 744–757.
doi:10.1006/jabr.2000.8368
5. Goze, M. and Remm, E. Lie-admissible algebras and operads. J. Algebra, 2004, 273, 129–152.
doi:10.1016/j.jalgebra.2003.10.015
6. Goze, M. and Remm, E. Lie admissible coalgebras. J. Gen. Lie Theory Appl., 2007, 1, 19–28.
7. Goze, N. and Remm, E. n-ary associative algebras, cohomology, free algebras and coalgebras. arXiv:math/0803.0553.
8. Markl, M. and Remm, E. (Non-)Koszulity of operads for n-ary algebras, cohomology and deformations. arXiv:math/0907.1505.
9. Markl, M., Shnider, S., and Stasheff, J. Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, 2002.
10. Remm, E. and Goze, M. On the algebras obtained by tensor product. arXiv:math/0606105.