1. Coxeter, H. S. M. and Moser, W. O. J. Generators and Relations for Discrete Groups. Springer-Verlag, 1972.
2. Gramushnjak, T. A characterization of a class of 2-groups by their defining relations. J. Gen. Lie Theory Appl., 2008, 2, 157–161.
doi:10.4303/jglta/S070312
3. Gramushnjak, T. and Puusemp, P. A characterization of a class of groups of order 32 by their endomorphism semigroups. Algebras Groups Geom., 2005, 22, 387–412.
4. Gramushnjak, T. and Puusemp, P. Description of a class of 2-Groups. J. Nonlinear Math. Phys., 2006, 13, 55–65.
doi:10.2991/jnmp.2006.13.s.7
5. Gramushnjak, T. and Puusemp, P. A characterization of a class of 2-groups by their endomorphism semigroups. Ch. 14 In Generalized Lie Theory in Mathematics, Physics and Beyond (Silvestrov, S. et al., eds). Springer-Verlag, Berlin, 2009, 151–159.
doi:10.1007/978-3-540-85332-9_14
6. Hall, M., Jr. and Senior, J. K. The Groups of Order 2n, n £ 6. Macmillan, New York; Collier-Macmillan, London, 1964.
7. Puusemp, P. Non-abelian groups of order 16 and their endomorphism semigroups. J. Math. Sci., 2005, 131, 6098–6111.
doi:10.1007/s10958-005-0463-x
8. Puusemp, P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys., 2006, 13, Supplement, 93–101.
doi:10.2991/jnmp.2006.13.s.11
doi:10.1007/s10958-007-0251-x