ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Aza-peptides: expectations and reality; pp. 241–254
PDF | 10.3176/proc.2022.3.05

Authors
Anu Ploom, Anton Mastitski, Meeli Arujõe, Alla Troska, Jaak Järv
Abstract

The replacement of the α-carbon atom in an α-amino acid structure by a nitrogen atom yields alkylcarbazic acids, also known as α-aza amino acids. Although the topology of α-amino acids and α-aza amino acids is similar, their chemical and stereochemical properties are significantly different. For this reason, the application of the common solid-phase peptide synthesis (SPPS) protocol cannot be used for aza-peptide bond synthesis without changes. On the other hand, the aza-peptide bond is more stable than the common peptide bond, therefore these compounds are very attractive targets for drug design. In this review, we summarize data on aza-peptide bond chemistry, with implications for the improvement of aza-peptide chemical synthesis.

References

1. Eustache, S., Leprince, J. and Tufféry, P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin. Drug Discov., 2016, 11(8), 771–784.
https://doi.org/10.1080/17460441.2016.1201058

2. Avan, I, Hall, C. D. and Katritzky, A. R. Peptidomimetics via modifications of amino acids and peptide bonds. Chem. Soc. Rev. 2014, 43(10), 3575–3594.
https://doi.org/10.1039/c3cs60384a

3. Pollaro, L. and Heinis, C. Strategies to prolong the plasma residence time of peptide drugs. Med. Chem. Comm., 2010, 1(5), 319–324.
https://doi.org/10.1039/C0MD00111B

4. Tal-Gan Y., Freeman, N. S., Klein, S., Levitzki, A. and Gilon, C. Metabolic stability of peptidomimetics: N-methyl and aza heptapeptide analogs of a PKB/Akt inhibitor. Chem. Biol. Drug Des., 2011, 78(5), 887–892.
https://doi.org/10.1111/j.1747-0285.2011.01207.x

5. Trabocchi, A. and Guarna, A. Peptidomimetics in Organic and Medicinal Chemistry: The Art of Transforming Peptides in Drugs. John Wiley & Sons, 2014.
https://doi.org/10.1002/9781118683033

6. Vagner, J., Qu, H. and Hruby, V. J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 292–296.
https://doi.org/10.1016/j.cbpa.2008.03.009

7. Dutta, A. S. and Morley, J. S. Polypeptides. Part XIII. Preparation of α-aza-amino-acid (carbazic acid) derivatives and intermediates for the preparation of α-aza-peptides. J. Chem. Soc., Perkin Trans. 1, 1975, 1, 1712–1720.
https://doi.org/10.1039/P19750001712

8. Begum, A., Sujatha, D., Prasad, K. and Bharathi, K. A review on azapeptides, the promising peptidomimetics. Asian J. Chem., 2017, 29(9), 1879–1887.
https://doi.org/10.14233/ajchem.2017.20802

9. André, F., Boussard, G., Bayeul, D., Didierjean, C., Aubry, A. and Marraud, M. Aza-peptides II. X-Ray structures of aza-alanine and aza-asparagine-containing peptides. J. Pept. Res., 1997, 49(6), 556–562.
https://doi.org/10.1111/j.1399-3011.1997.tb01163.x

10. Boeglin, D. and Lubell W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7(6), 864–878.
https://doi.org/10.1021/cc050043h

11. Quibell, M., Turnell, W. G. and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans. 1, 1993, 1993(22), 2843–2849.
https://doi.org/10.1039/p19930002843

12. Lee, H-J., Song, J-W., Choi, Y-S., Park, H-M. and Lee, K-B. A theoretical study of conformational properties of N-methyl azapeptide derivatives. J. Am. Chem. Soc., 2002, 124(40), 11881–11893.
https://doi.org/10.1021/ja026496x

13. Melendez, R.E. and Lubell, W. D. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-aza1-dipeptides in peptide synthesis. J. Am. Chem. Soc., 2004, 126(21), 6759–6764.
https://doi.org/10.1021/ja039643f

14. Thormann, M. and Hofmann, H-J. Conformational prop­erties of azapeptides. J. Mol. Struct., 1999, 469(1–3), 63–76.
https://doi.org/10.1016/S0166-1280(98)00567-3

15. Lee, H-J., Jung, H. J., Kim, J. H., Park, H-M. and Lee, K-B. Conformational preference of azaglycine-containing dipeptides studied by PCM and IPCM methods. Chem. Phys., 2003, 294(2), 201–210.
https://doi.org/10.1016/j.chemphys.2003.06.001

16. Abbas, C., Pickaert, G., Didierjean, C., Grégoire, B. J. and Vanderesse, R. Original and efficient synthesis of 2:1-[α/aza]-oligomer precursors. Tetrahedron Lett., 2009, 50(28), 4158–4160.
https://doi.org/10.1016/j.tetlet.2009.04.131

17. Didierjean, C., Duca, V. D., Benedetti, E., Aubry, A., Zouikri, M., Marraud, M. et al. X-ray structures of aza-proline-containing peptides. J. Pept. Res., 1997, 50(6), 451–457.
https://doi.org/10.1111/j.1399-3011.1997.tb01208.x

18. André, F., Vicherat, A., Boussard, G., Aubry, A. and Marraud, M. Aza-peptides. III. Experimental structural analysis of aza-alanme and aza-asparagine-containing peptides. J. Pept. Res., 1997, 50(5), 372–381.
https://doi.org/10.1111/j.1399-3011.1997.tb01197.x

19. Sabatino, D., Proulx, C., Klocek, S., Bourguet, C. B., Boeglin, D., Ong, H. et al. Exploring side-chain diversity by submonomer solid-phase aza-peptide synthesis. Org. Lett., 2009, 11(16), 3650–3653.
https://doi.org/10.1021/ol901423c

20. McMechen, M. A., Willis, E. L., Gourville, P. C. and Proulx, C. Aza-amino acids disrupt β-sheet secondary structures. Molecules, 2019, 24(10), 1919.
https://doi.org/10.3390/molecules24101919

21. von Hentig, N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today, 2008, 44(2), 103–132.
https://doi.org/10.1358/dot.2008.44.2.1137107

22. Fässler, A., Bold, G., Capraro, H., Cozens, R., Mestan, J., Poncioni, B. et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39(16), 3203–3216.
https://doi.org/10.1021/jm960022p

23. Zhang, R., Durkin, J. P. and Windsor, W. T. Azapeptides as inhibitors of the hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett., 2002, 12(7), 1005–1008.
https://doi.org/10.1016/S0960-894X(02)00102-6

24. Huang, Y., Malcolm, B. A. and Vederas, J. C. Synthesis and testing of azaglutamine derivatives as inhibitors of hepatitis A virus (HAV) 3C proteinase. Bioorg. Med. Chem., 1999, 7(4), 607–619.
https://doi.org/10.1016/S0968-0896(99)00006-1

25. Epinette, C., Croix, C., Jaquillard, L., Marchand-Adam, S., Kellenberger, C., Lalmanach, G. et al. A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate. Biochem. Pharmacol., 2012, 83(6), 788–796.
https://doi.org/10.1016/j.bcp.2011.12.023

26. Freeman, N. S., Tal-Gan, Y., Klein, S., Levitzki, A. and Gilon, C. Microwave-assisted solid-phase aza-peptide synthesis: aza scan of a PKB/Akt inhibitor using aza-arginine and aza-proline precursors. J. Org. Chem., 2011, 76(9), 3078–3085.
https://doi.org/10.1021/jo102422x

27. Harrison, T. S. and Scott, L. J. Atazanavir: a review of its use in the management of HIV infection. Drugs, 2005, 65(16), 2309–2336.
https://doi.org/10.2165/00003495-200565160-00010

28. Spiegel, J., Mas-Moruno, C., Kessler, H. and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. J. Org. Chem., 2012, 77(12), 5271–5278.
https://doi.org/10.1021/jo300311q

29. Boeglin, D., Xiang, Z., Sorenson, N. B., Wood, M. S., Haskell-Luevano, C. and Lubell, W. D. Aza-scanning of the potent melanocortin receptor agonist Ac-His-d-Phe-Arg-Trp-NH2. Chem. Biol. Drug. Des., 2006, 67(4), 275–283.
https://doi.org/10.1111/j.1747-0285.2006.00378.x

30. Elsawy, M., Tikhonova, I., Martin, L. and Walker, B. Smac-derived aza-peptide as an aminopeptidase-resistant XIAP BIR3 antagonist. Protein Pept. Lett., 2015, 22(9), 836–843.
https://doi.org/10.2174/0929866522666150622101626

31. Goldschmidt, S. and Wick, M. Über Peptid-Synthesen I. Justus Liebigs Annal. Chem., 1952, 575(2), 217–231 (in German).
https://doi.org/10.1002/jlac.19525750207

32. Hess, H-J., Moreland, W. T. and Laubach, G. D. N-[2-Isopropyl-3-(L-aspartyl-L-arginyl)-carbazoyl]-L- tyrosyl-L- valyl-L-histidyl-L-prolyl-L-phenylalanine,1 an isostere of bovine angiotensin II. J. Am. Chem. Soc., 1963, 85(24), 4040–4041.
https://doi.org/10.1021/ja00907a036

33. Gupton, B. F., Carroll, D. L., Tuhy, P. M., Kam, C. M. and Powers, J. C. Reaction of azapeptides with chymotrypsin-like enzymes. New inhibitors and active site titrants for chymotrypsin A alpha, subtilisin BPN’, subtilisin Carlsberg, and human leukocyte cathepsin G. J. Biol. Chem., 1984, 259, 4279–4287.
https://doi.org/10.1016/S0021-9258(17)43042-0

34. Freeman, N. S., Hurevich, M. and Gilon, C. Synthesis of N’-substituted Ddz-protected hydrazines and their application in solid phase synthesis of aza-peptides. Tetrahedron, 2009, 65, 1737–1745.
https://doi.org/10.1016/j.tet.2008.11.038

35. Chingle, R., Ratni, S., Claing, A. and Lubell, W. D. Application of constrained aza-valine analogs for Smac mimicry. Pept. Sci., 2016, 106(3), 235–244.
https://doi.org/10.1002/bip.22851

36. Chingle, R., Proulx, C. and Lubell, W. D. Azapeptide syn­thesis methods for expanding side-chain diversity for bio- medical applications. Acc. Chem. Res, 2017, 50, 1541–1556.
https://doi.org/10.1021/acs.accounts.7b00114

37. Staal, E. and Faurholt, C. Studies on carbamates. IV. The carbamates of hydrazine. Dan Tidsskr. Farm., 1951, 25, 1–11.

38. Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A. et al. Solid-phase synthesis of ‘mixed’ pepti­domimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids. J. Org. Chem., 2005, 70, 10701–10708.
https://doi.org/10.1021/jo051585o

39. Hart, M. and Beeson, C. Utility of azapeptides as major histocompatibility complex class II protein ligands for T-cell activation. J. Med. Chem., 2001, 44, 3700–3709.
https://doi.org/10.1021/jm0101895

40. Tsubrik, O. and Mäeorg, U. Combination of tert-butoxy­carbonyl and triphenylphosphonium protecting groups in the synthesis of substituted hydrazines. Org. Lett., 2001, 3, 2297–2299.
https://doi.org/10.1021/ol0160856

41. Dupont, V., Lecoq, A., Mangeot, J. P., Aubry, A., Boussard, G. and Marraud, M. Conformational perturbations induced by N-amination and N-hydroxylation of peptides. J. Am. Chem. Soc,. 1993, 115, 8898–8906.
https://doi.org/10.1021/ja00073a002

42. Mastitski, A., Niinepuu, S., Haljasorg, T. and Järv, J. One-pot synthesis of protected alkylhydrazines from acetals and ketals. Scope and limitations. Org. Prep. Proced. Int., 2015, 47, 490–498.
https://doi.org/10.1080/00304948.2015.1088760

43. Wieczerzak, E., Kozolowska, J., Lankiewicz, L. and Grzonka, Z. The efficient synthesis of azaamino acids. Polish J. Chem., 2002, 76, 1693–1697.

44. Bailey, M. D., Halmos, T., Goudreau, N., Lescop, E. and Llinàs-Brunet, M. Novel azapeptide inhibitors of hepatitis C virus serine protease. J. Med. Chem., 2004, 47, 3788–3799.
https://doi.org/10.1021/jm049864b

45. Calabretta, R., Gallina, C. and Giordano, C. Sodium cyanoborohydride reduction of (benzyloxycarbonyl)- and (tert-utoxycarbonyl)hydrazones. Synthesis, 1991, 7, 536–539.
https://doi.org/10.1055/s-1991-26511

46. Mastitski, A. and Järv, J. One-pot synthesis of Fmoc- and Boc-protected aza-methionine precursors from 2-methyl­thioacetaldehyde dimethyl acetal. Org. Prep. Proced. Int., 2014, 46, 559–564.
https://doi.org/10.1080/00304948.2014.963460

47. Mastitski, A., Kisseljova, K. and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proc. Estonian Acad. Sci., 2014, 63, 438–443.
https://doi.org/10.3176/proc.2014.4.09

48. Traoré, M., Doan, N-D. and Lubell, W. D. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-ornithine, and aza-arginine. Org. Lett., 2014, 16, 3588–3591.
https://doi.org/10.1021/ol501586y

49. Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.
https://doi.org/10.1016/j.tetlet.2007.06.082

50. Mastitski, A., Abramov, A., Kruve, A. and Järv, J. Potassium iodide catalysis in the alkylation of protected hydrazines. Proc. Estonian Acad. Sci., 2017, 66, 10–17.
https://doi.org/10.3176/proc.2017.1.03

51. Bouayad-Gervais, S. H. and Lubell, W. D. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame. Molecules, 2013, 18, 14739– 14746.
https://doi.org/10.3390/molecules181214739

52. Gray, C. J., Quibell, M., Jiang, K-L. and Baggett, N. Synthesis and spectroscopic properties of azaglutamine amino acid and peptide derivatives. Synthesis, 1991, 2, 141–146.
https://doi.org/10.1055/s-1991-26399

53. Bondebjerg, J., Fuglsang, H., Valeur, K. R., Kaznelson, D. W., Hansen, J. A., Pedersen, R. O. et al. Novel semicarbazide-derived inhibitors of human dipeptidyl peptidase I (hDPPI). Bioorg. Med. Chem., 2005, 13, 4408–4424.
https://doi.org/10.1016/j.bmc.2005.04.048

54. Mastitski, A., Niinepuu, S., Haljasorg, T. and Järv, J. One-pot synthesis of protected benzylhydrazines from acetals. Org. Prep. Proced. Int., 2018, 50, 416–423.
https://doi.org/10.1080/00304948.2018.1468983

55. Carpino, L. A., Santilli, A. A. and Murray, R. W. Oxidative reactions of hydrazines. V. Synthesis of monobenzyl 1,1-disubstituted hydrazines and 2-amino-2,3-dihydro-1H- benz[de]isoquinoline1,2. J. Am. Chem. Soc., 1960, 82, 2728–2731.
https://doi.org/10.1021/ja01496a019

56. Mastitski, A., Haljasorg, T., Kipper, K. and Järv, J. Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation. Proc. Estonian Acad. Sci., 2015, 64, 168–178.
https://doi.org/10.3176/proc.2015.2.05

57. Vahter, K., Mastitski, A., Haljasorg, T. and Järv, J. Regioselective one-pot synthesis of N-Fmoc/Cbz, N’’-Boc protected indol-(3)-ylmethylhydrazines. Org. Prep. Proced. Int., 2020, 52, 212–218.
https://doi.org/10.1080/00304948.2020.1745597

58. Carpino, L. A. and Han, G. Y. 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.
https://doi.org/10.1021/jo00795a005

59. Carpino, L. A, Collins, D., Göwecke, S., Mayo, J., Thatte, S. D. and Tibbetts, F. tert-Butyl carbazate. Org. Synth., 1964, 44, 20–23.
https://doi.org/10.15227/orgsyn.044.0020

60. Ovchinnikov, Y. A., Kiryushkin, A. A. and Miroshnikov, A. I. A new convenient method for the synthesis of tert.-butyloxycarbonylhydrazine. Experientia, 1965, 21, 418– 419.
https://doi.org/10.1007/BF02139781

61. Pozdnev, V. F. Tert-butyloxy carbonylation of hydrazine and its derivatives by di-tert-butyl dicarbonate. Russian J. Org. Chem., 1977, 13, 2531–2535.
https://doi.org/10.1002/chin.197812150

62. Rabjohn, N. The synthesis and reactions of disazodic­ar­boxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.
https://doi.org/10.1021/ja01183a089

63. McCord, T. J., Ravel, J. M., Skinner, C. G. and Shive, W. O-carbazyl-DL-serine, an inhibitory analog of glutamine. J. Am. Chem. Soc., 1958, 80, 3762–3764.
https://doi.org/10.1021/ja01547a074

64. Gao, Y. and Lam, Y. Synthesis of pyrazolo[5,1-d] [1,2,3,5]tetrazine-4(3H)-ones. J. Comb. Chem., 2010, 12, 69–74.
https://doi.org/10.1021/cc900063y

65. Hartmut, H. Hydrazinoacids as heterocomponents of peptides. VI. Hydrazinoacetic acid derivatives and their use for the synthesis of hydrazino- and N-aminopeptides. Chem. Ber., 1965, 98, 3451–3461.
https://doi.org/10.1002/cber.19650981104

66. Kost, A. N. and Sagitullin, R. S. Monoalkylhydrazines. Russian Chem. Rev., 1964, 33, 159.
https://doi.org/10.1070/RC1964v033n04ABEH001393

67. Proulx, C., Picard, É., Boeglin, D., Pohankova, P., Chemtob, S., Ong, H. et al. Azapeptide analogues of the growth hormone releasing peptide 6 as cluster of differentiation 36 receptor ligands with reduced affinity for the growth hormone secretagogue receptor 1a. J. Med. Chem., 2012, 55, 6502–6511.
https://doi.org/10.1021/jm300557t

68. Gibson, C., Goodman, S. L., Hahn, D., Hölzemann, G. and Kessler, H. Novel solid-phase synthesis of azapeptides and azapeptoides via Fmoc-strategy and its application in the synthesis of RGD-mimetics. J. Org. Chem., 1999, 64, 7388–7394.
https://doi.org/10.1021/jo9906173

69. André, F., Marraud, M., Tsouloufis, T., Tzartos, S. J. and Boussard, G. Triphosgene: an efficient carbonylating agent for liquid and solid-phase aza-peptide synthesis. Application to the synthesis of two aza-analogues of the AChR MIR decapeptide. J. Pept. Sci., 1997, 3, 429–441.
https://doi.org/10.1002/(SICI)1099-1387(199711)3:6<429::AID-PSC115>3.0.CO;2-C

70. Frochot, C., Vanderesse, R., Driou, A., Linden, G., Marraud, M. and Thong Cung M. A solid-phase synthesis of three aza-, iminoaza- and reduced aza-peptides from the same pre­cursor. Lett. Pept. Sci., 1997, 4, 219–225.
https://doi.org/10.1007/BF02442879

71. Venkatraman, S., Kong, J., Nimkar, S., Wang, Q. M., Aubé, J. and Hanzlik, R. P. Design, synthesis, and evaluation of azapeptides as substrates and inhibitors for human rhino­virus 3C protease. Bioorg. Med. Chem. Lett., 1999, 9, 577–580.
https://doi.org/10.1016/S0960-894X(99)00049-9

72. Arujõe, M., Ploom, A., Mastitski, A. and Järv, J. Comparison of various coupling reagents in solid-phase aza-peptide synthesis. Tetrahedron Lett., 2017, 58, 3421–3425.
https://doi.org/10.1016/j.tetlet.2017.07.063

73. Nigst, T. A., Antipova, A. and Mayr, H. Nucleophilic reactivities of hydrazines and amines: the futile search for the α-effect in hydrazine reactivities. J. Org. Chem., 2012, 77, 8142–8155.
https://doi.org/10.1021/jo301497g

74. Arujõe, M., Ploom, A., Mastitski, A. and Järv, J. Influence of steric effects in solid-phase aza-peptide synthesis. Tetrahedron Lett., 2018, 59, 2010–2013.
https://doi.org/10.1016/j.tetlet.2018.04.021

75. Troska, A., Arujõe, M., Mastitski, A., Järv, J. and Ploom, A. Steric impact of aza-amino acid on solid-phase aza-peptide bond synthesis. Tetrahedron Lett., 2021, 152973.
https://doi.org/10.1016/j.tetlet.2021.152973

76. Fauchère, J. L., Charton, M., Kier, L. B., Verloop, A. and Pliska, V. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res., 1988, 32, 269–278.
https://doi.org/10.1111/j.1399-3011.1988.tb01261.x

77. Newman, M. S. Steric Effects in Organic Chemistry. Wiley, New York, 1956. 

78. El-Faham, A., Funosas, R. S., Prohens, R. and Albericio, F. COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem. – Eur. J., 2009, 15(37), 9404–9416.
https://doi.org/10.1002/chem.200900615

79. Subirós-Funosas, R., El-Faham, A. and Albericio, F. PyOxP and PyOxB: the Oxyma-based novel family of phosphonium salts. Org. Biomol. Chem., 2010, 8, 3665–3673.
https://doi.org/10.1039/c003719b

80. El-Faham, A. and Albericio, F. Morpholine-based immonium and halogenoamidinium salts as coupling reagents in peptide synthesis. J. Org. Chem., 2008, 73, 2731–2737.
https://doi.org/10.1021/jo702622c

81. Hood, C. A., Fuentes, G., Patel, H., Page, K., Menakuru, M. and Park, J. H. Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J. Pept. Sci., 2008, 14, 97–101.
https://doi.org/10.1002/psc.921

82. Alewood, P., Alewood, D., Miranda, L., Love, S., Meutermans, W. and Wilson, D. [2] Rapid in situ neutralization protocols for Boc and Fmoc solid-phase chemistries. In Methods in Enzymology. Vol. 289. Academic Press, 1997, 14–29.
https://doi.org/10.1016/S0076-6879(97)89041-6

83. Knorr, R., Trzeciak, A., Bannwarth, W. and Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett., 1989, 30, 1927–1930.
https://doi.org/10.1016/S0040-4039(00)99616-3

84. Coste, J., Le-Nguyen, D. and Castro, B. PyBOP®: A new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett., 1990, 31, 205–208.
https://doi.org/10.1016/S0040-4039(00)94371-5

85. Fathallah, M. F. and Khattab, S. N. Spectrophotometric determination of pKa’s of 1-hydroxybenzotriazole and oxime derivatives in 95% acetonitrile-water. J. Chem. Soc. Pakistan, 2011, 33(3), 324–332.

Back to Issue