The replacement of the α-carbon atom in an α-amino acid structure by a nitrogen atom yields alkylcarbazic acids, also known as α-aza amino acids. Although the topology of α-amino acids and α-aza amino acids is similar, their chemical and stereochemical properties are significantly different. For this reason, the application of the common solid-phase peptide synthesis (SPPS) protocol cannot be used for aza-peptide bond synthesis without changes. On the other hand, the aza-peptide bond is more stable than the common peptide bond, therefore these compounds are very attractive targets for drug design. In this review, we summarize data on aza-peptide bond chemistry, with implications for the improvement of aza-peptide chemical synthesis.
1. Eustache, S., Leprince, J. and Tufféry, P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin. Drug Discov., 2016, 11(8), 771–784.
https://doi.org/10.1080/17460441.2016.1201058
2. Avan, I, Hall, C. D. and Katritzky, A. R. Peptidomimetics via modifications of amino acids and peptide bonds. Chem. Soc. Rev. 2014, 43(10), 3575–3594.
https://doi.org/10.1039/c3cs60384a
3. Pollaro, L. and Heinis, C. Strategies to prolong the plasma residence time of peptide drugs. Med. Chem. Comm., 2010, 1(5), 319–324.
https://doi.org/10.1039/C0MD00111B
4. Tal-Gan Y., Freeman, N. S., Klein, S., Levitzki, A. and Gilon, C. Metabolic stability of peptidomimetics: N-methyl and aza heptapeptide analogs of a PKB/Akt inhibitor. Chem. Biol. Drug Des., 2011, 78(5), 887–892.
https://doi.org/10.1111/j.1747-0285.2011.01207.x
5. Trabocchi, A. and Guarna, A. Peptidomimetics in Organic and Medicinal Chemistry: The Art of Transforming Peptides in Drugs. John Wiley & Sons, 2014.
https://doi.org/10.1002/9781118683033
6. Vagner, J., Qu, H. and Hruby, V. J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 292–296.
https://doi.org/10.1016/j.cbpa.2008.03.009
7. Dutta, A. S. and Morley, J. S. Polypeptides. Part XIII. Preparation of α-aza-amino-acid (carbazic acid) derivatives and intermediates for the preparation of α-aza-peptides. J. Chem. Soc., Perkin Trans. 1, 1975, 1, 1712–1720.
https://doi.org/10.1039/P19750001712
8. Begum, A., Sujatha, D., Prasad, K. and Bharathi, K. A review on azapeptides, the promising peptidomimetics. Asian J. Chem., 2017, 29(9), 1879–1887.
https://doi.org/10.14233/ajchem.2017.20802
9. André, F., Boussard, G., Bayeul, D., Didierjean, C., Aubry, A. and Marraud, M. Aza-peptides II. X-Ray structures of aza-alanine and aza-asparagine-containing peptides. J. Pept. Res., 1997, 49(6), 556–562.
https://doi.org/10.1111/j.1399-3011.1997.tb01163.x
10. Boeglin, D. and Lubell W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7(6), 864–878.
https://doi.org/10.1021/cc050043h
11. Quibell, M., Turnell, W. G. and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans. 1, 1993, 1993(22), 2843–2849.
https://doi.org/10.1039/p19930002843
12. Lee, H-J., Song, J-W., Choi, Y-S., Park, H-M. and Lee, K-B. A theoretical study of conformational properties of N-methyl azapeptide derivatives. J. Am. Chem. Soc., 2002, 124(40), 11881–11893.
https://doi.org/10.1021/ja026496x
13. Melendez, R.E. and Lubell, W. D. Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-aza1-dipeptides in peptide synthesis. J. Am. Chem. Soc., 2004, 126(21), 6759–6764.
https://doi.org/10.1021/ja039643f
14. Thormann, M. and Hofmann, H-J. Conformational properties of azapeptides. J. Mol. Struct., 1999, 469(1–3), 63–76.
https://doi.org/10.1016/S0166-1280(98)00567-3
15. Lee, H-J., Jung, H. J., Kim, J. H., Park, H-M. and Lee, K-B. Conformational preference of azaglycine-containing dipeptides studied by PCM and IPCM methods. Chem. Phys., 2003, 294(2), 201–210.
https://doi.org/10.1016/j.chemphys.2003.06.001
16. Abbas, C., Pickaert, G., Didierjean, C., Grégoire, B. J. and Vanderesse, R. Original and efficient synthesis of 2:1-[α/aza]-oligomer precursors. Tetrahedron Lett., 2009, 50(28), 4158–4160.
https://doi.org/10.1016/j.tetlet.2009.04.131
17. Didierjean, C., Duca, V. D., Benedetti, E., Aubry, A., Zouikri, M., Marraud, M. et al. X-ray structures of aza-proline-containing peptides. J. Pept. Res., 1997, 50(6), 451–457.
https://doi.org/10.1111/j.1399-3011.1997.tb01208.x
18. André, F., Vicherat, A., Boussard, G., Aubry, A. and Marraud, M. Aza-peptides. III. Experimental structural analysis of aza-alanme and aza-asparagine-containing peptides. J. Pept. Res., 1997, 50(5), 372–381.
https://doi.org/10.1111/j.1399-3011.1997.tb01197.x
19. Sabatino, D., Proulx, C., Klocek, S., Bourguet, C. B., Boeglin, D., Ong, H. et al. Exploring side-chain diversity by submonomer solid-phase aza-peptide synthesis. Org. Lett., 2009, 11(16), 3650–3653.
https://doi.org/10.1021/ol901423c
20. McMechen, M. A., Willis, E. L., Gourville, P. C. and Proulx, C. Aza-amino acids disrupt β-sheet secondary structures. Molecules, 2019, 24(10), 1919.
https://doi.org/10.3390/molecules24101919
21. von Hentig, N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today, 2008, 44(2), 103–132.
https://doi.org/10.1358/dot.2008.44.2.1137107
22. Fässler, A., Bold, G., Capraro, H., Cozens, R., Mestan, J., Poncioni, B. et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39(16), 3203–3216.
https://doi.org/10.1021/jm960022p
23. Zhang, R., Durkin, J. P. and Windsor, W. T. Azapeptides as inhibitors of the hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett., 2002, 12(7), 1005–1008.
https://doi.org/10.1016/S0960-894X(02)00102-6
24. Huang, Y., Malcolm, B. A. and Vederas, J. C. Synthesis and testing of azaglutamine derivatives as inhibitors of hepatitis A virus (HAV) 3C proteinase. Bioorg. Med. Chem., 1999, 7(4), 607–619.
https://doi.org/10.1016/S0968-0896(99)00006-1
25. Epinette, C., Croix, C., Jaquillard, L., Marchand-Adam, S., Kellenberger, C., Lalmanach, G. et al. A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate. Biochem. Pharmacol., 2012, 83(6), 788–796.
https://doi.org/10.1016/j.bcp.2011.12.023
26. Freeman, N. S., Tal-Gan, Y., Klein, S., Levitzki, A. and Gilon, C. Microwave-assisted solid-phase aza-peptide synthesis: aza scan of a PKB/Akt inhibitor using aza-arginine and aza-proline precursors. J. Org. Chem., 2011, 76(9), 3078–3085.
https://doi.org/10.1021/jo102422x
27. Harrison, T. S. and Scott, L. J. Atazanavir: a review of its use in the management of HIV infection. Drugs, 2005, 65(16), 2309–2336.
https://doi.org/10.2165/00003495-200565160-00010
28. Spiegel, J., Mas-Moruno, C., Kessler, H. and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. J. Org. Chem., 2012, 77(12), 5271–5278.
https://doi.org/10.1021/jo300311q
29. Boeglin, D., Xiang, Z., Sorenson, N. B., Wood, M. S., Haskell-Luevano, C. and Lubell, W. D. Aza-scanning of the potent melanocortin receptor agonist Ac-His-d-Phe-Arg-Trp-NH2. Chem. Biol. Drug. Des., 2006, 67(4), 275–283.
https://doi.org/10.1111/j.1747-0285.2006.00378.x
30. Elsawy, M., Tikhonova, I., Martin, L. and Walker, B. Smac-derived aza-peptide as an aminopeptidase-resistant XIAP BIR3 antagonist. Protein Pept. Lett., 2015, 22(9), 836–843.
https://doi.org/10.2174/0929866522666150622101626
31. Goldschmidt, S. and Wick, M. Über Peptid-Synthesen I. Justus Liebigs Annal. Chem., 1952, 575(2), 217–231 (in German).
https://doi.org/10.1002/jlac.19525750207
32. Hess, H-J., Moreland, W. T. and Laubach, G. D. N-[2-Isopropyl-3-(L-aspartyl-L-arginyl)-carbazoyl]-L- tyrosyl-L- valyl-L-histidyl-L-prolyl-L-phenylalanine,1 an isostere of bovine angiotensin II. J. Am. Chem. Soc., 1963, 85(24), 4040–4041.
https://doi.org/10.1021/ja00907a036
33. Gupton, B. F., Carroll, D. L., Tuhy, P. M., Kam, C. M. and Powers, J. C. Reaction of azapeptides with chymotrypsin-like enzymes. New inhibitors and active site titrants for chymotrypsin A alpha, subtilisin BPN’, subtilisin Carlsberg, and human leukocyte cathepsin G. J. Biol. Chem., 1984, 259, 4279–4287.
https://doi.org/10.1016/S0021-9258(17)43042-0
34. Freeman, N. S., Hurevich, M. and Gilon, C. Synthesis of N’-substituted Ddz-protected hydrazines and their application in solid phase synthesis of aza-peptides. Tetrahedron, 2009, 65, 1737–1745.
https://doi.org/10.1016/j.tet.2008.11.038
35. Chingle, R., Ratni, S., Claing, A. and Lubell, W. D. Application of constrained aza-valine analogs for Smac mimicry. Pept. Sci., 2016, 106(3), 235–244.
https://doi.org/10.1002/bip.22851
36. Chingle, R., Proulx, C. and Lubell, W. D. Azapeptide synthesis methods for expanding side-chain diversity for bio- medical applications. Acc. Chem. Res, 2017, 50, 1541–1556.
https://doi.org/10.1021/acs.accounts.7b00114
37. Staal, E. and Faurholt, C. Studies on carbamates. IV. The carbamates of hydrazine. Dan Tidsskr. Farm., 1951, 25, 1–11.
38. Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A. et al. Solid-phase synthesis of ‘mixed’ peptidomimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids. J. Org. Chem., 2005, 70, 10701–10708.
https://doi.org/10.1021/jo051585o
39. Hart, M. and Beeson, C. Utility of azapeptides as major histocompatibility complex class II protein ligands for T-cell activation. J. Med. Chem., 2001, 44, 3700–3709.
https://doi.org/10.1021/jm0101895
40. Tsubrik, O. and Mäeorg, U. Combination of tert-butoxycarbonyl and triphenylphosphonium protecting groups in the synthesis of substituted hydrazines. Org. Lett., 2001, 3, 2297–2299.
https://doi.org/10.1021/ol0160856
41. Dupont, V., Lecoq, A., Mangeot, J. P., Aubry, A., Boussard, G. and Marraud, M. Conformational perturbations induced by N-amination and N-hydroxylation of peptides. J. Am. Chem. Soc,. 1993, 115, 8898–8906.
https://doi.org/10.1021/ja00073a002
42. Mastitski, A., Niinepuu, S., Haljasorg, T. and Järv, J. One-pot synthesis of protected alkylhydrazines from acetals and ketals. Scope and limitations. Org. Prep. Proced. Int., 2015, 47, 490–498.
https://doi.org/10.1080/00304948.2015.1088760
43. Wieczerzak, E., Kozolowska, J., Lankiewicz, L. and Grzonka, Z. The efficient synthesis of azaamino acids. Polish J. Chem., 2002, 76, 1693–1697.
44. Bailey, M. D., Halmos, T., Goudreau, N., Lescop, E. and Llinàs-Brunet, M. Novel azapeptide inhibitors of hepatitis C virus serine protease. J. Med. Chem., 2004, 47, 3788–3799.
https://doi.org/10.1021/jm049864b
45. Calabretta, R., Gallina, C. and Giordano, C. Sodium cyanoborohydride reduction of (benzyloxycarbonyl)- and (tert-utoxycarbonyl)hydrazones. Synthesis, 1991, 7, 536–539.
https://doi.org/10.1055/s-1991-26511
46. Mastitski, A. and Järv, J. One-pot synthesis of Fmoc- and Boc-protected aza-methionine precursors from 2-methylthioacetaldehyde dimethyl acetal. Org. Prep. Proced. Int., 2014, 46, 559–564.
https://doi.org/10.1080/00304948.2014.963460
47. Mastitski, A., Kisseljova, K. and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proc. Estonian Acad. Sci., 2014, 63, 438–443.
https://doi.org/10.3176/proc.2014.4.09
48. Traoré, M., Doan, N-D. and Lubell, W. D. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-ornithine, and aza-arginine. Org. Lett., 2014, 16, 3588–3591.
https://doi.org/10.1021/ol501586y
49. Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.
https://doi.org/10.1016/j.tetlet.2007.06.082
50. Mastitski, A., Abramov, A., Kruve, A. and Järv, J. Potassium iodide catalysis in the alkylation of protected hydrazines. Proc. Estonian Acad. Sci., 2017, 66, 10–17.
https://doi.org/10.3176/proc.2017.1.03
51. Bouayad-Gervais, S. H. and Lubell, W. D. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame. Molecules, 2013, 18, 14739– 14746.
https://doi.org/10.3390/molecules181214739
52. Gray, C. J., Quibell, M., Jiang, K-L. and Baggett, N. Synthesis and spectroscopic properties of azaglutamine amino acid and peptide derivatives. Synthesis, 1991, 2, 141–146.
https://doi.org/10.1055/s-1991-26399
53. Bondebjerg, J., Fuglsang, H., Valeur, K. R., Kaznelson, D. W., Hansen, J. A., Pedersen, R. O. et al. Novel semicarbazide-derived inhibitors of human dipeptidyl peptidase I (hDPPI). Bioorg. Med. Chem., 2005, 13, 4408–4424.
https://doi.org/10.1016/j.bmc.2005.04.048
54. Mastitski, A., Niinepuu, S., Haljasorg, T. and Järv, J. One-pot synthesis of protected benzylhydrazines from acetals. Org. Prep. Proced. Int., 2018, 50, 416–423.
https://doi.org/10.1080/00304948.2018.1468983
55. Carpino, L. A., Santilli, A. A. and Murray, R. W. Oxidative reactions of hydrazines. V. Synthesis of monobenzyl 1,1-disubstituted hydrazines and 2-amino-2,3-dihydro-1H- benz[de]isoquinoline1,2. J. Am. Chem. Soc., 1960, 82, 2728–2731.
https://doi.org/10.1021/ja01496a019
56. Mastitski, A., Haljasorg, T., Kipper, K. and Järv, J. Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation. Proc. Estonian Acad. Sci., 2015, 64, 168–178.
https://doi.org/10.3176/proc.2015.2.05
57. Vahter, K., Mastitski, A., Haljasorg, T. and Järv, J. Regioselective one-pot synthesis of N-Fmoc/Cbz, N’’-Boc protected indol-(3)-ylmethylhydrazines. Org. Prep. Proced. Int., 2020, 52, 212–218.
https://doi.org/10.1080/00304948.2020.1745597
58. Carpino, L. A. and Han, G. Y. 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.
https://doi.org/10.1021/jo00795a005
59. Carpino, L. A, Collins, D., Göwecke, S., Mayo, J., Thatte, S. D. and Tibbetts, F. tert-Butyl carbazate. Org. Synth., 1964, 44, 20–23.
https://doi.org/10.15227/orgsyn.044.0020
60. Ovchinnikov, Y. A., Kiryushkin, A. A. and Miroshnikov, A. I. A new convenient method for the synthesis of tert.-butyloxycarbonylhydrazine. Experientia, 1965, 21, 418– 419.
https://doi.org/10.1007/BF02139781
61. Pozdnev, V. F. Tert-butyloxy carbonylation of hydrazine and its derivatives by di-tert-butyl dicarbonate. Russian J. Org. Chem., 1977, 13, 2531–2535.
https://doi.org/10.1002/chin.197812150
62. Rabjohn, N. The synthesis and reactions of disazodicarboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.
https://doi.org/10.1021/ja01183a089
63. McCord, T. J., Ravel, J. M., Skinner, C. G. and Shive, W. O-carbazyl-DL-serine, an inhibitory analog of glutamine. J. Am. Chem. Soc., 1958, 80, 3762–3764.
https://doi.org/10.1021/ja01547a074
64. Gao, Y. and Lam, Y. Synthesis of pyrazolo[5,1-d] [1,2,3,5]tetrazine-4(3H)-ones. J. Comb. Chem., 2010, 12, 69–74.
https://doi.org/10.1021/cc900063y
65. Hartmut, H. Hydrazinoacids as heterocomponents of peptides. VI. Hydrazinoacetic acid derivatives and their use for the synthesis of hydrazino- and N-aminopeptides. Chem. Ber., 1965, 98, 3451–3461.
https://doi.org/10.1002/cber.19650981104
66. Kost, A. N. and Sagitullin, R. S. Monoalkylhydrazines. Russian Chem. Rev., 1964, 33, 159.
https://doi.org/10.1070/RC1964v033n04ABEH001393
67. Proulx, C., Picard, É., Boeglin, D., Pohankova, P., Chemtob, S., Ong, H. et al. Azapeptide analogues of the growth hormone releasing peptide 6 as cluster of differentiation 36 receptor ligands with reduced affinity for the growth hormone secretagogue receptor 1a. J. Med. Chem., 2012, 55, 6502–6511.
https://doi.org/10.1021/jm300557t
68. Gibson, C., Goodman, S. L., Hahn, D., Hölzemann, G. and Kessler, H. Novel solid-phase synthesis of azapeptides and azapeptoides via Fmoc-strategy and its application in the synthesis of RGD-mimetics. J. Org. Chem., 1999, 64, 7388–7394.
https://doi.org/10.1021/jo9906173
69. André, F., Marraud, M., Tsouloufis, T., Tzartos, S. J. and Boussard, G. Triphosgene: an efficient carbonylating agent for liquid and solid-phase aza-peptide synthesis. Application to the synthesis of two aza-analogues of the AChR MIR decapeptide. J. Pept. Sci., 1997, 3, 429–441.
https://doi.org/10.1002/(SICI)1099-1387(199711)3:6<429::AID-PSC115>3.0.CO;2-C
70. Frochot, C., Vanderesse, R., Driou, A., Linden, G., Marraud, M. and Thong Cung M. A solid-phase synthesis of three aza-, iminoaza- and reduced aza-peptides from the same precursor. Lett. Pept. Sci., 1997, 4, 219–225.
https://doi.org/10.1007/BF02442879
71. Venkatraman, S., Kong, J., Nimkar, S., Wang, Q. M., Aubé, J. and Hanzlik, R. P. Design, synthesis, and evaluation of azapeptides as substrates and inhibitors for human rhinovirus 3C protease. Bioorg. Med. Chem. Lett., 1999, 9, 577–580.
https://doi.org/10.1016/S0960-894X(99)00049-9
72. Arujõe, M., Ploom, A., Mastitski, A. and Järv, J. Comparison of various coupling reagents in solid-phase aza-peptide synthesis. Tetrahedron Lett., 2017, 58, 3421–3425.
https://doi.org/10.1016/j.tetlet.2017.07.063
73. Nigst, T. A., Antipova, A. and Mayr, H. Nucleophilic reactivities of hydrazines and amines: the futile search for the α-effect in hydrazine reactivities. J. Org. Chem., 2012, 77, 8142–8155.
https://doi.org/10.1021/jo301497g
74. Arujõe, M., Ploom, A., Mastitski, A. and Järv, J. Influence of steric effects in solid-phase aza-peptide synthesis. Tetrahedron Lett., 2018, 59, 2010–2013.
https://doi.org/10.1016/j.tetlet.2018.04.021
75. Troska, A., Arujõe, M., Mastitski, A., Järv, J. and Ploom, A. Steric impact of aza-amino acid on solid-phase aza-peptide bond synthesis. Tetrahedron Lett., 2021, 152973.
https://doi.org/10.1016/j.tetlet.2021.152973
76. Fauchère, J. L., Charton, M., Kier, L. B., Verloop, A. and Pliska, V. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res., 1988, 32, 269–278.
https://doi.org/10.1111/j.1399-3011.1988.tb01261.x
77. Newman, M. S. Steric Effects in Organic Chemistry. Wiley, New York, 1956.
78. El-Faham, A., Funosas, R. S., Prohens, R. and Albericio, F. COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem. – Eur. J., 2009, 15(37), 9404–9416.
https://doi.org/10.1002/chem.200900615
79. Subirós-Funosas, R., El-Faham, A. and Albericio, F. PyOxP and PyOxB: the Oxyma-based novel family of phosphonium salts. Org. Biomol. Chem., 2010, 8, 3665–3673.
https://doi.org/10.1039/c003719b
80. El-Faham, A. and Albericio, F. Morpholine-based immonium and halogenoamidinium salts as coupling reagents in peptide synthesis. J. Org. Chem., 2008, 73, 2731–2737.
https://doi.org/10.1021/jo702622c
81. Hood, C. A., Fuentes, G., Patel, H., Page, K., Menakuru, M. and Park, J. H. Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J. Pept. Sci., 2008, 14, 97–101.
https://doi.org/10.1002/psc.921
82. Alewood, P., Alewood, D., Miranda, L., Love, S., Meutermans, W. and Wilson, D. [2] Rapid in situ neutralization protocols for Boc and Fmoc solid-phase chemistries. In Methods in Enzymology. Vol. 289. Academic Press, 1997, 14–29.
https://doi.org/10.1016/S0076-6879(97)89041-6
83. Knorr, R., Trzeciak, A., Bannwarth, W. and Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett., 1989, 30, 1927–1930.
https://doi.org/10.1016/S0040-4039(00)99616-3
84. Coste, J., Le-Nguyen, D. and Castro, B. PyBOP®: A new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett., 1990, 31, 205–208.
https://doi.org/10.1016/S0040-4039(00)94371-5
85. Fathallah, M. F. and Khattab, S. N. Spectrophotometric determination of pKa’s of 1-hydroxybenzotriazole and oxime derivatives in 95% acetonitrile-water. J. Chem. Soc. Pakistan, 2011, 33(3), 324–332.