ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Equivalence of realizability conditions for nonlinear control systems; pp. 24–42
PDF | https://doi.org/10.3176/phys.math.2006.1.03

Authors
Ülle Kotta ORCID Icon, Tanel Mullari
Abstract

The relationship between three state space realizability conditions for nonlinear multi-input multi-output differential equations, formulated in terms of different mathematical tools, is studied. Moreover, explicit formulae are provided for calculating the differentials of the state coordinates which, in case the necessary and sufficient realizability conditions are satisfied, can be integrated to obtain the state coordinates. The main differences in comparison with the single-input single-output case are clarified.

References

1. Kotta, Ü. and Mullari, T. Equivalence of different realization methods for higher order nonlinear input-output differential equations. European J. Control, 2005, 11, 185– 193. 
https://doi.org/10.3166/ejc.11.185-193

2. van der Schaft, A. J. On realization of nonlinear systems described by higher-order differential equations. Math. Syst. Theory, 1987, 19 (20), 239–275 (305–306). 
https://doi.org/10.1007/BF01692072

3. van der Schaft, A. J. Transformations and representations of nonlinear systems. In Perspectives in Control Theory (Jakubczyk, B., Malanowski, K. and Respondek, W., eds). Birkhäuser, Boston, 1990, 297–314. 

4. Delaleau, E. and Respondek, W. Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control, 1995, 5, 1–27. 

5. Moog, C. H., Y-F Zheng and Liu, P. Input-output equivalence of nonlinear systems and their realizations. In Proceedings of the 15th IFAC World Congress, Barcelona (Camacho, E. F., Basañez, L. and de la Puente, J. A., eds). Elsevier, 2002, 265–270. 
https://doi.org/10.3182/20020721-6-ES-1901.00294

6. Crouch, P. E. and Lamnabhi-Lagarrigue, F. State space realizations of nonlinear systems defined by input-output differential equations. In Analysis and Optimization Systems (Bensousan, A. and Lions, J. L., eds), Lecture Notes in Control and Inform. Sci., 1988, 111, 138–149. 
https://doi.org/10.1007/BFb0042209

7. Glad, S. T. Nonlinear state space and input-output descriptions using differential polynomials. In New Trends in Nonlinear Control Theory (Descusse, J., Fliess, M., Isidori, A. and Leborne, P., eds), Lecture Notes in Control and Inform. Sci., 1989, 122, 182–189. 
https://doi.org/10.1007/BFb0043027

8. Kotta,Ü.Removinginputderivativesingeneralizedstate-spacesystems:alinearalgebraic approach. In Proceedings of the 4th International Conference on Actual Problems of Electronics Instrument Engineering. Novosibirsk, 1998, 391–396. 
https://doi.org/10.1109/APEIE.1998.768996

9. Sontag,E.D.Bilinearrealizabilityisequivalenttoexistenceofasingularaffinedifferential i/o equation. Systems Control Lett., 1988, 11, 181–187. 
https://doi.org/10.1016/0167-6911(88)90057-6

10. Wang, Y. and Sontag, E. D. Algebraic differential equations and rational control systems. SIAM J. Contr. Opt., 1992, 30, 1126–1149. 
https://doi.org/10.1137/0330060

11. Liu, P. and Moog, C. H. Minimal realization for single-input single-output nonlinear systems. In Proc. ACC, 1994, 551–552. 

12. Crouch, P. E. and Lamnabhi-Lagarrigue, F. Realizations of input-output differential equations. In Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II. Proc. MTNS-91. Mita Press, 1992, 259–264. 

13. Popov, V. M. Some properties of the control systems with irreducible matrix transfer functions. Lecture Notes Math., 1969, 144, 169–180. 
https://doi.org/10.1007/BFb0059934

14. van der Schaft, A. J. Transformations of nonlinear systems under external equivalence. Lecture Notes in Control and Inform. Sci., 1988, 122, 33–43. 
https://doi.org/10.1007/BFb0043015

15. Conte, G., Moog, C. H. and Perdon, A. M. Nonlinear control systems. Lecture Notes in Control and Inform. Sci., 1999, 242

16. Aranda-Bricaire, E., Moog, C. H. and Pomet, J. B. A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control, 1995, 40, 127–132. 
https://doi.org/10.1109/9.362886

17. Sidhu, G. S. and Franklin, G. F. Technique for analog computer realization and choice of state variables for a class of nonlinear systems. IEEE Trans. Automat. Control, 1972, 17, 718–720. 
https://doi.org/10.1109/TAC.1972.1100105

Back to Issue

Back issues