We classify Lorentzian para-Sasakian manifolds which satisfy P · C = 0, Z · C = LC Q(g, C), P · Z − Z · P = 0, and P · Z + Z · P = 0, where P is the v−Weyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor.
1. Matsumoto, K. On Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci., 1989, 12, 151–156.
2. Mihai, I. and Rosca, R. On Lorentzian P-Sasakian Manifolds, Classical Analysis. World Scientific, Singapore, 1992, 155–169.
3. Matsumoto, K. and Mihai, I. On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor, N. S., 1988, 47, 189–197.
4. Tripathi, M. M. and De, U. C. Lorentzian almost paracontact manifolds and their submanifolds. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 2001, 8, 101–105.
5. Blair, D. E., Kim, J. S. and Tripathi, M. M. On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc., 2005, 42, 883–892.
https://doi.org/10.4134/JKMS.2005.42.5.883
6. Tigaeru, C. v-projective symmetries of fibered manifolds. Arch. Math., 1998, 34, 347–352. 7. Sato, I. On a structure similar to almost contact structures. Tensor, N. S., 1976, 30, 219– 224.
8. Sato, I. On a structure similar to almost contact structures II. Tensor, N. S., 1977, 31, 199–205.
9. Yano, K. and Kon, M. Structures on Manifolds. Series in Pure Mathematics, Vol. 3, 1984. World Scientific, Singapore.
https://doi.org/10.1142/0067
10. Blair, D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, Vol. 509, 1976, Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0079307
11. Deszcz, R. On pseudosymmetric spaces. Bull. Soc. Math. Belg., 1990, 49, 134–145.