For real Hilbert spaces Hi with 2 ≤ dim Hi ≤ 4 we determine the norm of the embedding B(H1, H2, H3) → S1(H1, H2, H3) of trilinear Schatten–von Neumann classes.
1. Bernhardsson, B., Cobos, F., Kühn, T., Mondoc, D. and Peetre, J. Quaternary binary trilinear forms of norm unity. Proc. Estonian Acad. Sci. Phys. Math., 2006, 55, 150– 158.
2. Cobos, F., Kühn, T. and Peetre, J. Schatten–von Neumann classes of multilinear forms. Duke Math. J., 1992, 65, 121–156.
https://doi.org/10.1215/S0012-7094-92-06505-7
3. Cobos, F., Kühn, T. and Peetre, J. On the structure of bounded trilinear forms. Preprint, Lund University, 1997.
4. Cobos, F., Kühn, T. and Peetre, J. On Sp-classes of trilinear forms. J. London Math. Soc., 1999, 59, 1003–1022.
https://doi.org/10.1112/S0024610799007504
5. Cobos, F., Kühn, T. and Peetre, J. Extreme points of the complex binary trilinear ball. Studia Math., 2000, 138, 81–92.
6. Cobos, F., Kühn, T. and Peetre, J. Remarks on symmetries of trilinear forms. Rev. R. Acad. Cienc. Exact. Fis. Nat. (Esp.), 2000, 94, 441–449.
7. Cobos, F., Kühn, T. and Peetre, J. Multilinear forms of Hilbert type and some other distinguished forms. Integral Equations Operator Theory (to appear).
8. Grząślewicz, R. and John, K. Extreme elements of the unit ball of bilinear operators on l22. Arch. Math. (Basel), 1988, 50, 264–269.
https://doi.org/10.1007/BF01187744