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Abstract. For real Hilbert spaces Hi with 2 ≤ dimHi ≤ 4 we determine the norm of the
embedding B(H1,H2,H3) ↪→ S1(H1,H2,H3) of trilinear Schatten–von Neumann classes.
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1. INTRODUCTION

In complete analogy to the bilinear (operator) case one can define bounded,
compact, Hilbert–Schmidt, and nuclear multilinear forms on Hilbert spaces. Some
of the relevant properties of the usual Schatten–von Neumann classes remain valid
in the multilinear setting, for instance, certain duality relations and interpolation
formulae.

In other respects, however, there are striking differences to the bilinear case,
caused by the lack of the Schmidt representation for multilinear forms. For
example, the norms of certain embeddings depend on the underlying scalar field,
K = R or C, in sharp contrast to the bilinear case.

Trilinear forms were studied in more detail in a number of papers (see,
e.g., [1−7]) in particular in low-dimensional settings. In this note we continue these
investigations. Our aim is to determine the exact embedding constants for trilinear
Schatten classes over real Hilbert spaces H1,H2,H3 of dimensions between 2
and 4.
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2. TRILINEAR SCHATTEN–VON NEUMANN CLASSES

2.1. Definitions

Let H1,H2, and H3 be Hilbert spaces over the scalar field K = R or C. A
trilinear form T : H1 ×H2 ×H3 → K is called
(a) bounded, if ‖T‖ = sup { |T (x, y, z)| : ‖x‖ = ‖y‖ = ‖z‖ = 1 } < ∞,

(b) Hilbert–Schmidt, if ‖T‖2 =
(∑

j,k,` |T (ej , fk, g`)|2
)1/2

< ∞,

(c) nuclear, if ‖T‖1 = inf
∑∞

j=1 ‖uj‖ ‖vj‖ ‖wj‖ < ∞.

Here {ej}, {fk}, and {g`} are arbitrary orthonormal bases in H1,H2, and H3, and
the infimum in ‖T‖1 is taken over all nuclear representations of T ,

T (x, y, z) =
∞∑

j=1

〈x, uj〉〈y, vj〉〈z, wj〉 .

By B(H1,H2,H3), S2(H1,H2,H3), and S1(H1,H2,H3) we denote the
corresponding trilinear Schatten–von Neumann classes.

One always has
‖T‖ ≤ ‖T‖2 ≤ ‖T‖1 ,

and if the Hilbert spaces Hi are finite-dimensional, then the three norms are
equivalent. We want to determine the best constants in the reverse inequalities,
if K = R and dimHi = ni with 2 ≤ n1 ≤ n2 ≤ n3 ≤ 4 .

2.2. Normal shape

A certain surrogate for the lacking Schmidt representation is the so-called
normal shape of trilinear forms, which was introduced in [2].1 Here we only
need the first step in its construction, which we are going to describe now. Let
T : H1 × H2 × H3 → K be a trilinear form with ‖T‖ = 1. If the Hilbert spaces
Hi are finite-dimensional (or, more general, if T is compact), then there are unit
vectors e ∈ H1, f ∈ H2, and g ∈ H3 with

T (e, f, g) = ‖T‖ = 1 .

For x ⊥ e, y ⊥ f , and z ⊥ g, a variational argument shows

T (x, f, g) = T (e, y, g) = T (e, f, z) = 0 .

1 In [1] the terminology has been changed a little, as we speak there of “normalized forms”
rather than of “forms in normal shape”, which is rather clumsy.
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Writing arbitrary vectors in H1 as x = x1e + x′ with x′ ⊥ e, and similarly
y = y1f + y′ with y′ ⊥ f , z = z1g + z′ with z′ ⊥ g, respectively, we obtain

T (x, y, z) = T (x1e + x′, y1f + y′, z1g + z′) = x1y1z1

+ T (e, y′, z′)︸ ︷︷ ︸
B1(y′,z′)

x1 + T (x′, f, z′)︸ ︷︷ ︸
B2(z′,x′)

y1 + T (x′, y′, g)︸ ︷︷ ︸
B3(x′,y′)

z1 + T (x′, y′, z′)︸ ︷︷ ︸
C(x′,y′,z′)

with bilinear forms B1, B2, B3 and a trilinear form C, or shortly,

T (x, y, z) = x1y1z1 + B1x1 + B2y1 + B3z1 + C. (1)

2.3. Trilinear forms of norm unity

Moreover, we shall need a criterion for a trilinear form to be of norm unity. For
forms on two-dimensional spaces, this question was solved in [8] for real scalars,
and in [5] for complex scalars.

Let T : H1 ×H2 ×H3 → R be a trilinear form, given as in formula (1). But
now we do not assume that the unit vectors e, f , and g solve the maximum problem
T (x, y, z) = max. Then clearly ‖T‖ ≥ 1, and

‖T‖ = 1 ⇐⇒ sup
x,y,z 6=0

|T (x, y, z)|
‖x‖‖y‖‖z‖ ≤ 1.

By homogeneity and continuity it is enough to consider vectors of the form
x = x1e + x′, y = y1f + y′, and z = z1g + z′ with ‖x′‖ = ‖y′‖ = ‖z′‖ = 1.
Writing for simplicity x instead of x1, etc., we get

‖T‖ = 1 ⇐⇒ sup
x,y,z∈R

|xyz + B1x + B2y + B3z + C|√
(1 + x2)(1 + y2)(1 + z2)

≤ 1 (2)

for all vectors x′, y′, z′ of norm one. (Remember that the bilinear forms B1, B2, B3

and the trilinear form C depend on x′, y′, z′.) From the two-dimensional case we
know (see [8], and also [3] and [5]) that the condition in (2) is equivalent to

B2
1 + B2

2 + B2
3 + 2B1B2B3 + C2 ≤ 1 and |Bi| ≤ 1. (3)

Again, this must hold for all unit vectors x′ ⊥ e, y′ ⊥ f , and z′ ⊥ g.
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3. EMBEDDING CONSTANTS

From now on we assume that K = R and that H1,H2, and H3 are Hilbert
spaces with dimHi = ni, where 2 ≤ n1 ≤ n2 ≤ n3.

We are interested in the best constants d and d̂ in the inequalities

‖T‖1 ≤ d ‖T‖ and ‖T‖2 ≤ d̂ ‖T‖

for T : H1 × H2 × H3 → R . Obviously, these constants can be viewed as
embedding constants,

d = d(n1, n2, n3) = ‖ id : B(H1,H2,H3) ↪→ S1(H1,H2,H3)‖,
d̂ = d̂(n1, n2, n3) = ‖ id : B(H1,H2,H3) ↪→ S2(H1,H2,H3)‖ .

(4)

Using interpolation and duality arguments, it was shown in [4] that

d(n1, n2, n3) = d̂(n1, n2, n3)2 . (5)

By the same pattern of proof as for Theorem 2.1 of [4], where the case n1 = n2 =
n3 = n was treated, one can prove the following two-sided estimates.

Proposition 1. For all n1 ≤ n2 ≤ n3 it holds that

2
9π

n1n2 ≤ d(n1, n2, n3) ≤ n1n2 . (6)

Our main result is the following.

Theorem 2. For 2 ≤ n1 ≤ n2 ≤ n3 ≤ 4, the embedding constants d(n1, n2, n3)
have the values displayed in the table below.

n1 n2 n3 d(n1, n2, n3)
2 2 2, 3, 4 4
2 3 3 5
2 3 4 6
2 4 4 8
3 3 3 7 . . . 7.36
3 3 4 9
3 4 4 12
4 4 4 16

Proof.
Step 1. The case (n1, n2, n3) = (4, 4, 4).

We identify the unit vectors in R4 with quaternions,

e1 = 1 , e2 = i , e3 = j , e4 = k ,
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i.e., we can identify x = (x`) ∈ R4 with x = x1 +x2i+x3j +x4k ∈ H. Consider
the trilinear form

T (x, y, z) = Re (xyz), (7)

where xyz means multiplication in H. Clearly, ‖T‖ ≤ 1 . With the help of the
multiplication table in H

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

one can easily compute the coefficients Tijk = T (ei, ej , ek) and verify that

d(4, 4, 4) ≥ ‖T‖2
2 =

4∑

i,j,k=1

T 2
ijk = 16 .

The converse inequality is a special case of the general estimate (6).

Step 2. Lower estimates in all other cases.
Let S : Rn1 × Rn2 × Rn3 → R be the restriction of T in (7), where Rn means the
span of the first n unit vectors in R4. Then obviously ‖S‖ ≤ 1 and

d(n1, n2, n3) ≥ ‖S‖2
2 =

n1∑

i=1

n2∑

j=1

n3∑

k=1

T 2
ijk .

An inspection of the coefficients Tijk yields the lower estimate in all other cases,
the details are left to the reader.

Step 3. The upper estimate for (n1, n2, n3) = (2, 3, 3).
Let T : R2 × R3 × R3 → R be a trilinear form with ‖T‖ = 1 . If we write
T according to (1), then condition (3) holds. Choosing now orthonormal bases
{e, e′}, {f, f ′, f ′′}, and {g, g′, g′′} and adding (3) over all four choices of x′ = e′,
y′ = f ′, f ′′, and z′ = g′, g′′, we obtain

‖B1‖2
2 + 2‖B2‖2

2 + 2‖B3‖2
2 + 2 tr(B1B2B3) + ‖C‖2

2 ≤ 4 .

Since ‖B1‖ ≤ 1, we get

|2 tr(B1B2B3)| ≤ 2‖B1‖ ‖B2‖2‖B3‖2 ≤ ‖B2‖2
2 + ‖B3‖2

2 . (8)

Therefore we have

‖T‖2
2 = 1 + ‖B1‖2

2 + ‖B2‖2
2 + ‖B3‖2

2 + ‖C‖2
2

≤ 5− ‖B2‖2
2 − ‖B3‖2

2 − 2 tr(B1B2B3) ≤ 5 ,
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which yields the desired estimate

d(2, 3, 3) = sup { ‖T‖2
2 : ‖T : R2 × R3 × R3 → R‖ = 1 } ≤ 5 .

Step 4. The upper estimate for (n1, n2, n3) = (3, 3, 3)
Let T : R3 ×R3 ×R3 → R be a trilinear form with ‖T‖ = 1 , and let r ∈ [0, 1] be
a number, to be fixed later. We distinguish two cases.

Case 1. min {‖Bi‖2
2 : 1 ≤ i ≤ 3 } ≤ 1 + r2

Without loss of generality we can assume ‖B1‖2 = min ‖Bi‖2. Let P1

resp. P2 denote the orthogonal projections onto span {e} resp. {e}⊥, and set
Ti(x, y, z) = T (Pix, y, z). Since dim{e}⊥ = 2, we can regard T2 as a trilinear
form on R2 × R3 × R3. Clearly ‖T2‖ ≤ 1, thus Step 3 shows ‖T2‖2

2 ≤ 5. On
the other hand, by definition of T1, we have T1(x, y, z) = x1y1z1 + B1(y′, z′)x1,
whence ‖T1‖2

2 = 1 + ‖B1‖2
2 ≤ 2 + r2. This gives

‖T‖2
2 = ‖T1‖2

2 + ‖T‖2
2 ≤ 7 + r2 . (9)

Case 2. min ‖Bi‖2 ≥ 1 + r2

Proceeding analogously as in Step 3, we have now eight possible choices of
vectors x′, y′, z′, which implies in a similar way

2‖B1‖2
2 + 2‖B2‖2

2 + 2‖B3‖2
2 + 2 tr(B1B2B3) + ‖C‖2

2 ≤ 8 ,

and consequently, using the notation ‖Bi‖2
2 = 1 + r2

i , we get

‖T‖2
2 = 1 + ‖B1‖2

2 + ‖B2‖2
2 + ‖B3‖2

2 + ‖C‖2
2

≤ 9− ‖B1‖2
2 − ‖B2‖2

2 − ‖B3‖2
2 − 2 tr(B1B2B3)

≤ 6− r2
1 − r2

2 − r2
3 + 2| tr (B1B2B3)| . (10)

Now we need a finer estimate for the trace than (8). Denote the norm in the bilinear
Schatten class Sp, 1 ≤ p < ∞, by ‖ · ‖p. It is easy to prove, for bilinear forms
A : R2 × R2 → R and real numbers 0 ≤ r ≤ 1, that

‖A‖ ≤ 1 and ‖A‖2
2 = 1 + r2 implies ‖A‖3

3 ≤ 1 + r3 .

Applying this to the Bi, and using in addition the arithmetic-geometric mean
inequality, we get

| tr (B1B2B3)| ≤ ‖B1B2B3‖1 ≤ ‖B1‖3‖B2‖3‖B3‖3

≤ 1
3

(
‖B1‖3

3 + ‖B2‖3
3 + ‖B3‖3

3

)
≤ 1 +

r3
1 + r3

2 + r3
3

3
.
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Combining this with (10), observing that the function f(t) = 2t3−3t2 is decreasing
on [0, 1], and using the assumption ri ≥ r, we obtain

‖T‖2
2 ≤ 8 +

1
3

3∑

i=1

(
2r3

i − 3r2
i

) ≤ 8 + 2r3 − 3r2 . (11)

Summarizing both cases, i.e. inequalities (9) and (11), we get

d(3, 3, 3) ≤ min
0≤r≤1

max (7 + r2 , 8 + 2r3 − 3r2) .

Taking r = 3
5 , the maximum equals 7.36 , and the proof is finished.

Remark 1. Again we find an interesting difference between the bilinear and the
trilinear case. If we define embedding constants d(n1, n2), n1 ≤ n2, for bilinear
forms/operators in an analogous way, the Schmidt representation immediately
implies d(n1, n2) = n1, independently of n2.

So one might expect that the constants d(n1, n2, n3) in the trilinear setting
depend only on the two smallest dimensions. However, by our results there are
cases where d(n1, n2, n3) depends explicitly on all three dimensions, the simplest
example being d(2, 3, 3) = 5 < 6 = d(2, 3, 4).

This illustrates again the highly complicated structure of multilinear Schatten–
von Neumann classes, compared with their bilinear relatives.

Remark 2. For d(3, 3, 3) we have only a two-sided estimate; we conjecture that
the exact value is d(3, 3, 3) = 7.

Remark 3. Replacing the quaternions H in example (7) by octonions O, gives
that d(8, 8, 8) = 64. Similarly as in Step 2, one can obtain lower bounds for
d(n1, n2, n3) in the range 2 ≤ n1 ≤ n2 ≤ n3 ≤ 8.
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Sisestamiskonstandid kolmelineaarsete
Schatteni–von Neumanni klasside jaoks

Thomas Kühn ja Jaak Peetre

Reaalsete Hilberti ruumide Hi jaoks, kusjuures 2 ≤ dimHi ≤ 4, on määratud
sisestamise B(H1,H2,H3) ↪→ S1(H1,H2,H3) norm kolmelineaarsete Schatteni–
von Neumanni klasside puhul.
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